Patents by Inventor Benjamin A. Haskell

Benjamin A. Haskell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11322652
    Abstract: A method for growing on a substrate strongly aligned uniform cross-section semiconductor composite nanocolumns is disclosed. The method includes: (a) forming faceted pyramidal pits on the substrate surface; (b) initiating nucleation on the facets of the pits; and; (c) promoting the growth of nuclei toward the center of the pits where they coalesce with twinning and grow afterwards together as composite nanocolumns. Multi-quantum-well, core-shell nanocolumn heterostructures can be grown on the sidewalls of the nanocolumns. Furthermore, a continuous semiconductor epitaxial layer can be formed through the overgrowth of the nanocolumns to facilitate fabrication of high-quality planar device structures or for light emitting structures.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: May 3, 2022
    Assignee: Ostendo Technologies, Inc.
    Inventors: Anna Volkova, Vladimir Ivantsov, Alexander Syrkin, Benjamin A. Haskell, Hussein S. El-Ghoroury
  • Patent number: 10529892
    Abstract: A method for growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices, comprising identifying desired material properties for a particular device application, selecting a semipolar growth orientation based on the desired material properties, selecting a suitable substrate for growth of the selected semipolar growth orientation, growing a planar semipolar (Ga,Al,In,B)N template or nucleation layer on the substrate, and growing the semipolar (Ga,Al,In,B)N thin films, heterostructures or devices on the planar semipolar (Ga,Al,In,B)N template or nucleation layer. The method results in a large area of the semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices being parallel to the substrate surface.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: January 7, 2020
    Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, Japan Science and Technology Agency
    Inventors: Robert M. Farrell, Jr., Troy J. Baker, Arpan Chakraborty, Benjamin A. Haskell, P. Morgan Pattison, Rajat Sharma, Umesh K. Mishra, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Patent number: 10373830
    Abstract: An electromagnetic wave irradiation apparatus and methods to bond unbonded areas in a bonded pair of substrates are disclosed. The unbonded areas between the substrates are eliminated by thermal activation in the unbonded areas induced by electromagnetic wave irradiation having a wavelength selected to effect a phonon or electron excitation. A first substrate of the bonded pair of substrates absorbs the electromagnetic radiation and a portion of a resulting thermal energy transfers to an interface of the bonded pair of substrates at the unbonded areas with sufficient flux to cause opposite sides the first and second substrates to interact and dehydrate to form a bond (e.g., Si—O—Si bond).
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: August 6, 2019
    Assignee: Ostendo Technologies, Inc.
    Inventors: Hussein S. El-Ghoroury, Minghsuan Liu, Kameshwar Yadavalli, Weilong Tang, Benjamin A. Haskell, Hailong Zhou
  • Patent number: 9978582
    Abstract: A method to improve the planarity of a semiconductor wafer and an assembly made from the method. In a preferred embodiment of the method, a compressive PECVD oxide layer such as SiO2 having a predetermined thickness or pattern is deposited on the second surface of a semiconductor wafer having an undesirable warp or bow. The thickness or pattern of the deposited oxide layer is determined by the measured warp or bow of the semiconductor wafer. The compressive oxide layer induces an offsetting compressive force on the second surface of the semiconductor wafer to reduce the warp and bow across the major surface of the semiconductor wafer.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: May 22, 2018
    Assignee: Ostendo Technologies, Inc.
    Inventors: Gregory Batinica, Kameshwar Yadavalli, Qian Fan, Benjamin A. Haskell, Hussein S. El-Ghoroury
  • Publication number: 20180013035
    Abstract: A method for growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices, comprising identifying desired material properties for a particular device application, selecting a semipolar growth orientation based on the desired material properties, selecting a suitable substrate for growth of the selected semipolar growth orientation, growing a planar semipolar (Ga,Al,In,B)N template or nucleation layer on the substrate, and growing the semipolar (Ga,Al,In,B)N thin films, heterostructures or devices on the planar semipolar (Ga,Al,In,B)N template or nucleation layer. The method results in a large area of the semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices being parallel to the substrate surface.
    Type: Application
    Filed: September 7, 2017
    Publication date: January 11, 2018
    Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, Japan Science and Technology Agency
    Inventors: Robert M. Farrell, JR., Troy J. Baker, Arpan Chakraborty, Benjamin A. Haskell, P. Morgan Pattison, Rajat Sharma, Umesh K. Mishra, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Patent number: 9793435
    Abstract: A method for growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices, comprising identifying desired material properties for a particular device application, selecting a semipolar growth orientation based on the desired material properties, selecting a suitable substrate for growth of the selected semipolar growth orientation, growing a planar semipolar (Ga,Al,In,B)N template or nucleation layer on the substrate, and growing the semipolar (Ga,Al,In,B)N thin films, heterostructures or devices on the planar semipolar (Ga,Al,In,B)N template or nucleation layer. The method results in a large area of the semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices being parallel to the substrate surface.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: October 17, 2017
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: Robert M. Farrell, Jr., Troy J. Baker, Arpan Chakraborty, Benjamin A. Haskell, P. Morgan Pattison, Rajat Sharma, Umesh K. Mishra, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Publication number: 20170263457
    Abstract: An electromagnetic wave irradiation apparatus and methods to bond unbonded areas in a bonded pair of substrates are disclosed. The unbonded areas between the substrates are eliminated by thermal activation in the unbonded areas induced by electromagnetic wave irradiation having a wavelength selected to effect a phonon or electron excitation. A first substrate of the bonded pair of substrates absorbs the electromagnetic radiation and a portion of a resulting thermal energy transfers to an interface of the bonded pair of substrates at the unbonded areas with sufficient flux to cause opposite sides the first and second substrates to interact and dehydrate to form a bond (e.g., Si—O—Si bond).
    Type: Application
    Filed: March 7, 2017
    Publication date: September 14, 2017
    Inventors: Hussein S. El-Ghoroury, Minghsuan Liu, Kameshwar Yadavalli, Weilong Tang, Benjamin A. Haskell, Hailong Zhou
  • Publication number: 20170178891
    Abstract: A method to improve the planarity of a semiconductor wafer and an assembly made from the method. In a preferred embodiment of the method, a compressive PECVD oxide layer such as SiO2 having a predetermined thickness or pattern is deposited on the second surface of a semiconductor wafer having an undesirable warp or bow. The thickness or pattern of the deposited oxide layer is determined by the measured warp or bow of the semiconductor wafer. The compressive oxide layer induces an offsetting compressive force on the second surface of the semiconductor wafer to reduce the warp and bow across the major surface of the semiconductor wafer.
    Type: Application
    Filed: December 15, 2016
    Publication date: June 22, 2017
    Inventors: Gregory Batinica, Kameshwar Yadavalli, Qian Fan, Benjamin A. Haskell, Hussein S. El-Ghoroury
  • Publication number: 20170170363
    Abstract: A method for growing on a substrate strongly aligned uniform cross-section semiconductor composite nanocolumns is disclosed. The method includes: (a) forming faceted pyramidal pits on the substrate surface; (b) initiating nucleation on the facets of the pits; and; (c) promoting the growth of nuclei toward the center of the pits where they coalesce with twinning and grow afterwards together as composite nanocolumns. Multi-quantum-well, core-shell nanocolumn heterostructures can be grown on the sidewalls of the nanocolumns. Furthermore, a continuous semiconductor epitaxial layer can be formed through the overgrowth of the nanocolumns to facilitate fabrication of high-quality planar device structures or for light emitting structures.
    Type: Application
    Filed: December 13, 2016
    Publication date: June 15, 2017
    Inventors: Anna Volkova, Vladimir Ivantsov, Alexander Syrkin, Benjamin A. Haskell, Hussein S. El-Ghoroury
  • Patent number: 9660135
    Abstract: Methods are described to utilize relatively low cost substrates and processing methods to achieve enhanced emissive imager pixel performance via selective epitaxial growth. An emissive imaging array is coupled with one or more patterned compound semiconductor light emitting structures grown on a second patterned and selectively grown compound semiconductor template article. The proper design and execution of the patterning and epitaxial growth steps, coupled with alignment of the epitaxial structures with the imaging array, results in enhanced performance of the emissive imager. The increased luminous flux achieved enables use of such images for high brightness display and illumination applications.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: May 23, 2017
    Assignee: Ostendo Technologies, Inc.
    Inventors: Hussein S. El-Ghoroury, Benjamin A. Haskell
  • Patent number: 9443727
    Abstract: A method has been developed to overcome deficiencies in the prior art in the properties and fabrication of semi-polar group III-nitride templates, films, and materials. A novel variant of hydride vapor phase epitaxy has been developed that provides for controlled growth of nanometer-scale periodic structures. The growth method has been utilized to grow multi-period stacks of alternating AlGaN layers of distinct compositions. The application of such periodic structures to semi-polar III-nitrides yielded superior structural and morphological properties of the material, including reduced threading dislocation density and surface roughness at the free surface of the as-grown material. Such enhancements enable to fabrication of superior quality semi-polar III-nitride electronic and optoelectronic devices, including but not limited to transistors, light emitting diodes, and laser diodes.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: September 13, 2016
    Assignee: Ostendo Technologies, Inc.
    Inventors: Vitali Soukhoveev, Vladimir Ivantsov, Benjamin A. Haskell, Hussein S. El-Ghoroury, Alexander Syrkin
  • Publication number: 20160079738
    Abstract: A method for growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices, comprising identifying desired material properties for a particular device application, selecting a semipolar growth orientation based on the desired material properties, selecting a suitable substrate for growth of the selected semipolar growth orientation, growing a planar semipolar (Ga,Al,In,B)N template or nucleation layer on the substrate, and growing the semipolar (Ga,Al,In,B)N thin films, heterostructures or devices on the planar semipolar (Ga,Al,In,B)N template or nucleation layer. The method results in a large area of the semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices being parallel to the substrate surface.
    Type: Application
    Filed: November 30, 2015
    Publication date: March 17, 2016
    Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, Japan Science and Technology Agency
    Inventors: Robert M. Farrell, Troy J. Baker, Arpan Chakraborty, Benjamin A. Haskell, P. Morgan Pattison, Rajat Sharma, Umesh K. Mishra, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Patent number: 9231376
    Abstract: A method for growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices, comprising identifying desired material properties for a particular device application, selecting a semipolar growth orientation based on the desired material properties, selecting a suitable substrate for growth of the selected semipolar growth orientation, growing a planar semipolar (Ga,Al,In,B)N template or nucleation layer on the substrate, and growing the semipolar (Ga,Al,In,B)N thin films, heterostructures or devices on the planar semipolar (Ga,Al,In,B)N template or nucleation layer. The method results in a large area of the semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices being parallel to the substrate surface.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: January 5, 2016
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: Robert M. Farrell, Jr., Troy J. Baker, Arpan Chakraborty, Benjamin A. Haskell, P. Morgan Pattison, Rajat Sharma, Umesh K. Mishra, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Publication number: 20140353685
    Abstract: A method has been developed to overcome deficiencies in the prior art in the properties and fabrication of semi-polar group III-nitride templates, films, and materials. A novel variant of hydride vapor phase epitaxy has been developed that provides for controlled growth of nanometer-scale periodic structures. The growth method has been utilized to grow multi-period stacks of alternating AlGaN layers of distinct compositions. The application of such periodic structures to semi-polar III-nitrides yielded superior structural and morphological properties of the material, including reduced threading dislocation density and surface roughness at the free surface of the as-grown material. Such enhancements enable to fabrication of superior quality semi-polar III-nitride electronic and optoelectronic devices, including but not limited to transistors, light emitting diodes, and laser diodes.
    Type: Application
    Filed: August 13, 2014
    Publication date: December 4, 2014
    Inventors: Vitali Soukhoveev, Vladimir Ivantsov, Benjamin A. Haskell, Hussein S. El-Ghoroury, Alexander Syrkin
  • Publication number: 20140349427
    Abstract: Methods are described to utilize relatively low cost substrates and processing methods to achieve enhanced emissive imager pixel performance via selective epitaxial growth. An emissive imaging array is coupled with one or more patterned compound semiconductor light emitting structures grown on a second patterned and selectively grown compound semiconductor template article. The proper design and execution of the patterning and epitaxial growth steps, coupled with alignment of the epitaxial structures with the imaging array, results in enhanced performance of the emissive imager. The increased luminous flux achieved enables use of such images for high brightness display and illumination applications.
    Type: Application
    Filed: August 5, 2014
    Publication date: November 27, 2014
    Inventors: Hussein S. El-Ghoroury, Benjamin A. Haskell
  • Patent number: 8882935
    Abstract: A method for the fabrication of nonpolar indium gallium nitride (InGaN) films as well as nonpolar InGaN-containing device structures using metalorganic chemical vapor deposition (MOVCD). The method is used to fabricate nonpolar InGaN/GaN violet and near-ultraviolet light emitting diodes and laser diodes.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: November 11, 2014
    Assignees: The Regents of the University of California, The Japan Science and Technology Agency
    Inventors: Arpan Chakraborty, Benjamin A. Haskell, Stacia Keller, James S. Speck, Steven P. DenBaars, Shuji Nakamura, Umesh K. Mishra
  • Publication number: 20140211820
    Abstract: A method for growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices, comprising identifying desired material properties for a particular device application, selecting a semipolar growth orientation based on the desired material properties, selecting a suitable substrate for growth of the selected semipolar growth orientation, growing a planar semipolar (Ga,Al,In,B)N template or nucleation layer on the substrate, and growing the semipolar (Ga,Al,In,B)N thin films, heterostructures or devices on the planar semipolar (Ga,Al,In,B)N template or nucleation layer. The method results in a large area of the semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices being parallel to the substrate surface.
    Type: Application
    Filed: March 28, 2014
    Publication date: July 31, 2014
    Applicants: Japan Science and Technology Agency, The Regents of the University of California
    Inventors: Robert M. Farrell, JR., Troy J. Baker, Arpan Chakraborty, Benjamin A. Haskell, P. Morgan Pattison, Rajat Sharma, Umesh K. Mishra, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Publication number: 20140183579
    Abstract: A method for improved growth of a semipolar (Al,In,Ga,B)N semiconductor thin film using an intentionally miscut substrate. Specifically, the method comprises intentionally miscutting a substrate, loading a substrate into a reactor, heating the substrate under a flow of nitrogen and/or hydrogen and/or ammonia, depositing an InxGa1-xN nucleation layer on the heated substrate, depositing a semipolar nitride semiconductor thin film on the InxGa1-xN nucleation layer, and cooling the substrate under a nitrogen overpressure.
    Type: Application
    Filed: January 2, 2013
    Publication date: July 3, 2014
    Applicants: Japan Science and Technology Agency, The Regents of the University of California
    Inventors: John F. Kaeding, Dong-Seon Lee, Michael Iza, Troy J. Baker, Hitoshi Sato, Benjamin A. Haskell, James S. Speck, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 8686466
    Abstract: A method for growth and fabrication of semipolar (Ga, Al, In, B)N thin films, heterostructures, and devices, comprising identifying desired material properties for a particular device application, selecting a semipolar growth orientation based on the desired material properties, selecting a suitable substrate for growth of the selected semipolar growth orientation, growing a planar semipolar (Ga, Al, In, B)N template or nucleation layer on the substrate, and growing the semipolar (Ga, Al, In, B)N thin films, heterostructures or devices on the planar semipolar (Ga, Al, In, B)N template or nucleation layer. The method results in a large area of the semipolar (Ga, Al, In, B)N thin films, heterostructures, and devices being parallel to the substrate surface.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: April 1, 2014
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: Robert M. Farrell, Jr., Troy J. Baker, Arpan Chakraborty, Benjamin A. Haskell, P. Morgan Pattison, Rajat Sharma, Umesh K. Mishra, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Publication number: 20130264540
    Abstract: A method for the fabrication of nonpolar indium gallium nitride (InGaN) films as well as nonpolar InGaN-containing device structures using metalorganic chemical vapor deposition (MOVCD). The method is used to fabricate nonpolar InGaN/GaN violet and near-ultraviolet light emitting diodes and laser diodes.
    Type: Application
    Filed: June 4, 2013
    Publication date: October 10, 2013
    Applicants: JAPAN SCIENCE AND TECHNOLOGY AGENCY, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Arpan Chakraborty, Benjamin A. Haskell, Stacia Keller, James S. Speck, Steven P. DenBaars, Shuji Nakamura, Umesh K. Mishra