Patents by Inventor Benjamin Chu-Kung

Benjamin Chu-Kung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250040182
    Abstract: Systems, methods, and apparatuses are provided for an asymmetric vertical thin film transistor selector. An apparatus includes first and second source/drain regions formed on a substrate, a channel separating the first source/drain region and the second source/drain region, and a gate separated from the channel by a gate dielectric material. The first source/drain region, the second source/drain region, the channel, and the gate form a vertical thin film transistor, a first end of the channel is coupled to the first source/drain region and extends beyond a first end of the gate, and a second end of the channel is coupled to the second source/drain region and does not extend beyond a second end of the gate that is opposite the first end of the gate. A contact in the substrate is coupled to the first source/drain region and a sense line is coupled to the second source/drain region.
    Type: Application
    Filed: July 23, 2024
    Publication date: January 30, 2025
    Inventors: Paolo Fantini, Andrea Ghetti, Benjamin Chu-Kung, Sara Moon Villa
  • Patent number: 12191395
    Abstract: Disclosed herein are dual gate trench shaped thin film transistors and related methods and devices. Exemplary thin film transistor structures include a non-planar semiconductor material layer having a first portion extending laterally over a first gate dielectric layer, which is over a first gate electrode structure, and a second portion extending along a trench over the first gate dielectric layer, a second gate electrode structure at least partially within the trench, and a second gate dielectric layer between the second gate electrode structure and the first portion.
    Type: Grant
    Filed: October 25, 2023
    Date of Patent: January 7, 2025
    Assignee: Intel Corporation
    Inventors: Abhishek A. Sharma, Van H. Le, Gilbert Dewey, Jack T. Kavalieros, Shriram Shivaraman, Benjamin Chu-Kung, Yih Wang, Tahir Ghani
  • Patent number: 12183831
    Abstract: Embodiments herein describe techniques for a semiconductor device, which may include a substrate, and a U-shaped channel above the substrate. The U-shaped channel may include a channel bottom, a first channel wall and a second channel wall parallel to each other, a source area, and a drain area. A gate dielectric layer may be above the substrate and in contact with the channel bottom. A gate electrode may be above the substrate and in contact with the gate dielectric layer. A source electrode may be coupled to the source area, and a drain electrode may be coupled to the drain area. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: December 31, 2024
    Assignee: Intel Corporation
    Inventors: Van H. Le, Abhishek A. Sharma, Benjamin Chu-Kung, Gilbert Dewey, Ravi Pillarisetty, Miriam R. Reshotko, Shriram Shivaraman, Li Huey Tan, Tristan A. Tronic, Jack T. Kavalieros
  • Publication number: 20240258427
    Abstract: Integrated circuit structures having source or drain structures and germanium N-channels are described. In an example, an integrated circuit structure includes a fin having a lower fin portion and an upper fin portion, the upper fin portion including germanium. A gate stack is over the upper fin portion of the fin. A first source or drain structure includes an epitaxial structure embedded in the fin at a first side of the gate stack. A second source or drain structure includes an epitaxial structure embedded in the fin at a second side of the gate stack. Each epitaxial structure includes a first semiconductor layer in contact with the upper fin portion, and a second semiconductor layer on the first semiconductor layer. The first semiconductor layer comprises silicon, germanium and phosphorous, and the second semiconductor layer comprises silicon and phosphorous.
    Type: Application
    Filed: March 14, 2024
    Publication date: August 1, 2024
    Inventors: Ryan KEECH, Benjamin CHU-KUNG, Subrina RAFIQUE, Devin MERRILL, Ashish AGRAWAL, Harold KENNEL, Yang CAO, Dipanjan BASU, Jessica TORRES, Anand MURTHY
  • Patent number: 12009433
    Abstract: Embodiments disclosed herein include thin film transistors and methods of forming such thin film transistors. In an embodiment, the thin film transistor may comprise a substrate, a gate electrode over the substrate, and a gate dielectric stack over the gate electrode. In an embodiment, the gate dielectric stack may comprise a plurality of layers. In an embodiment, the plurality of layers may comprise an amorphous layer. In an embodiment, the thin film transistor may also comprise a semiconductor layer over the gate dielectric. In an embodiment, the semiconductor layer is a crystalline semiconductor layer. In an embodiment, the thin film transistor may also comprise a source electrode and a drain electrode.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: June 11, 2024
    Assignee: Intel Corporation
    Inventors: Van H. Le, Inanc Meric, Gilbert Dewey, Sean Ma, Abhishek A. Sharma, Miriam Reshotko, Shriram Shivaraman, Kent Millard, Matthew V. Metz, Wilhelm Melitz, Benjamin Chu-Kung, Jack Kavalieros
  • Patent number: 11973143
    Abstract: Integrated circuit structures having source or drain structures and germanium N-channels are described. In an example, an integrated circuit structure includes a fin having a lower fin portion and an upper fin portion, the upper fin portion including germanium. A gate stack is over the upper fin portion of the fin. A first source or drain structure includes an epitaxial structure embedded in the fin at a first side of the gate stack. A second source or drain structure includes an epitaxial structure embedded in the fin at a second side of the gate stack. Each epitaxial structure includes a first semiconductor layer in contact with the upper fin portion, and a second semiconductor layer on the first semiconductor layer. The first semiconductor layer comprises silicon, germanium and phosphorous, and the second semiconductor layer comprises silicon and phosphorous.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: April 30, 2024
    Assignee: Intel Corporation
    Inventors: Ryan Keech, Benjamin Chu-Kung, Subrina Rafique, Devin Merrill, Ashish Agrawal, Harold Kennel, Yang Cao, Dipanjan Basu, Jessica Torres, Anand Murthy
  • Publication number: 20240055531
    Abstract: Disclosed herein are dual gate trench shaped thin film transistors and related methods and devices. Exemplary thin film transistor structures include a non-planar semiconductor material layer having a first portion extending laterally over a first gate dielectric layer, which is over a first gate electrode structure, and a second portion extending along a trench over the first gate dielectric layer, a second gate electrode structure at least partially within the trench, and a second gate dielectric layer between the second gate electrode structure and the first portion.
    Type: Application
    Filed: October 25, 2023
    Publication date: February 15, 2024
    Applicant: Intel Corporation
    Inventors: Abhishek A. Sharma, Van H. Le, Gilbert Dewey, Jack T. Kavalieros, Shriram Shivaraman, Benjamin Chu-Kung, Yih Wang, Tahir Ghani
  • Patent number: 11894465
    Abstract: Deep gate-all-around semiconductor devices having germanium or group 111-V active layers are described. For example, a non-planar semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a hetero-junction between an upper layer and a lower layer of differing composition. An active layer is disposed above the hetero-structure and has a composition different from the upper and lower layers of the hetero-structure. A gate electrode stack is disposed on and completely surrounds a channel region of the active layer, and is disposed in a trench in the upper layer and at least partially in the lower layer of the hetero-structure. Source and drain regions are disposed in the active layer and in the upper layer, but not in the lower layer, on either side of the gate electrode stack.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: February 6, 2024
    Assignee: Google LLC
    Inventors: Ravi Pillarisetty, Willy Rachmady, Van H. Le, Seung Hoon Sung, Jessica S. Kachian, Jack T. Kavalieros, Han Wui Then, Gilbert Dewey, Marko Radosavljevic, Benjamin Chu-Kung, Niloy Mukherjee
  • Patent number: 11862715
    Abstract: Tunneling Field Effect Transistors (TFETs) are promising devices in that they promise significant performance increase and energy consumption decrease due to a steeper subthreshold slope (for example, smaller sub-threshold swing). In various embodiments, vertical fin-based TFETs can be fabricated in trenches, for example, silicon trenches. In another embodiment, vertical TFETs can be used on different material systems acting as a substrate and/or trenches (for example, Si, Ge, III-V semiconductors, GaN, and the like). In one embodiment, the tunneling direction in the channel of the vertical TFET can be perpendicular to the Si substrates. In one embodiment, this can be different than the tunneling direction in the channel of lateral TFETs.
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: January 2, 2024
    Assignee: Intel Corporation
    Inventors: Cheng-Ying Huang, Jack Kavalieros, Ian Young, Matthew Metz, Willy Rachmady, Uygar Avci, Ashish Agrawal, Benjamin Chu-Kung
  • Patent number: 11862728
    Abstract: Disclosed herein are dual gate trench shaped thin film transistors and related methods and devices. Exemplary thin film transistor structures include a non-planar semiconductor material layer having a first portion extending laterally over a first gate dielectric layer, which is over a first gate electrode structure, and a second portion extending along a trench over the first gate dielectric layer, a second gate electrode structure at least partially within the trench, and a second gate dielectric layer between the second gate electrode structure and the first portion.
    Type: Grant
    Filed: October 1, 2021
    Date of Patent: January 2, 2024
    Assignee: Intel Corporation
    Inventors: Abhishek A. Sharma, Van H. Le, Gilbert Dewey, Jack T. Kavalieros, Shriram Shivaraman, Benjamin Chu-Kung, Yih Wang, Tahir Ghani
  • Patent number: 11843054
    Abstract: Embodiments herein describe techniques for a semiconductor device including a transistor. The transistor includes a first metal contact as a source electrode, a second metal contact as a drain electrode, a channel area between the source electrode and the drain electrode, and a third metal contact aligned with the channel area as a gate electrode. The first metal contact may be located in a first metal layer along a first direction. The second metal contact may be located in a second metal layer along the first direction, in parallel with the first metal contact. The third metal contact may be located in a third metal layer along a second direction substantially orthogonal to the first direction. The third metal layer is between the first metal layer and the second metal layer. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: December 12, 2023
    Assignee: Intel Corporation
    Inventors: Van H. Le, Seung Hoon Sung, Benjamin Chu-Kung, Miriam Reshotko, Matthew Metz, Yih Wang, Gilbert Dewey, Jack Kavalieros, Tahir Ghani, Nazila Haratipour, Abhishek Sharma, Shriram Shivaraman
  • Patent number: 11742429
    Abstract: Techniques are disclosed for forming thin-film transistors (TFTs) with low contact resistance. As disclosed in the present application, the low contact resistance can be achieved by intentionally thinning one or both of the source/drain (S/D) regions of the thin-film layer of the TFT device. As the TFT layer may have an initial thickness in the range of 20-65 nm, the techniques for thinning the S/D regions of the TFT layer described herein may reduce the thickness in one or both of those S/D regions to a resulting thickness of 3-10 nm, for example. Intentionally thinning one or both of the S/D regions of the TFT layer induces more electrostatic charges inside the thinned S/D region, thereby increasing the effective dopant in that S/D region. The increase in effective dopant in the thinned S/D region helps lower the related contact resistance, thereby leading to enhanced overall device performance.
    Type: Grant
    Filed: October 22, 2021
    Date of Patent: August 29, 2023
    Assignee: Intel Corporation
    Inventors: Abhishek A. Sharma, Van H. Le, Li Huey Tan, Tristan A. Tronic, Benjamin Chu-Kung, Jack T. Kavalieros, Tahir Ghani
  • Patent number: 11735670
    Abstract: Integrated circuit transistor structures and processes are disclosed that reduce n-type dopant diffusion, such as phosphorous or arsenic, from the source region and the drain region of a germanium n-MOS device into adjacent channel regions during fabrication. The n-MOS transistor device may include at least 70% germanium (Ge) by atomic percentage. In an example embodiment, source and drain regions of the transistor are formed using a low temperature, non-selective deposition process of n-type doped material. In some embodiments, the low temperature deposition process is performed in the range of 450 to 600 degrees C. The resulting structure includes a layer of doped mono-crystyalline silicon (Si), or silicon germanium (SiGe), on the source/drain regions. The structure also includes a layer of doped amorphous Si:P (or SiGe:P) on the surfaces of a shallow trench isolation (STI) region and the surfaces of contact trench sidewalls.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: August 22, 2023
    Assignee: Intel Corporation
    Inventors: Glenn A. Glass, Anand S. Murthy, Karthik Jambunathan, Cory C. Bomberger, Tahir Ghani, Jack T. Kavalieros, Benjamin Chu-Kung, Seung Hoon Sung, Siddharth Chouksey
  • Patent number: 11721735
    Abstract: Thin film transistors having U-shaped features are described. In an example, integrated circuit structure including a gate electrode above a substrate, the gate electrode having a trench therein. A channel material layer is over the gate electrode and in the trench, the channel material layer conformal with the trench. A first source or drain contact is coupled to the channel material layer at a first end of the channel material layer outside of the trench. A second source or drain contact is coupled to the channel material layer at a second end of the channel material layer outside of the trench.
    Type: Grant
    Filed: January 20, 2022
    Date of Patent: August 8, 2023
    Assignee: Intel Corporation
    Inventors: Gilbert Dewey, Aaron Lilak, Van H. Le, Abhishek A. Sharma, Tahir Ghani, Willy Rachmady, Rishabh Mehandru, Nazila Haratipour, Jack T. Kavalieros, Benjamin Chu-Kung, Seung Hoon Sung, Shriram Shivaraman
  • Publication number: 20230223475
    Abstract: Disclosed herein are transistors with ferroelectric gates, and related methods and devices. For example, in some embodiments, a transistor may include a channel material, and a gate stack, and the gate stack may include a gate electrode material and a ferroelectric material between the gate electrode material and the channel material.
    Type: Application
    Filed: February 27, 2023
    Publication date: July 13, 2023
    Applicant: Intel Corporation
    Inventors: Abhishek A. Sharma, Ravi Pillarisetty, Brian S. Doyle, Elijah V. Karpov, Prashant Majhi, Gilbert W. Dewey, Benjamin Chu-Kung, Van H. Le, Jack T. Kavalieros, Tahir Ghani
  • Patent number: 11699756
    Abstract: Integrated circuit transistor structures are disclosed that reduce n-type dopant diffusion, such as phosphorous or arsenic, from the source region and the drain region of a germanium n-MOS device into adjacent shallow trench isolation (STI) regions during fabrication. The n-MOS transistor device may include at least 75% germanium by atomic percentage. In an example embodiment, the structure includes an intervening diffusion barrier deposited between the n-MOS transistor and the STI region to provide dopant diffusion reduction. In some embodiments, the diffusion barrier may include silicon dioxide with carbon concentrations between 5 and 50% by atomic percentage. In some embodiments, the diffusion barrier may be deposited using chemical vapor deposition (CVD), atomic layer deposition (ALD), or physical vapor deposition (PVD) techniques to achieve a diffusion barrier thickness in the range of 1 to 5 nanometers.
    Type: Grant
    Filed: December 2, 2021
    Date of Patent: July 11, 2023
    Assignee: Intel Corporation
    Inventors: Glenn A. Glass, Anand S. Murthy, Karthik Jambunathan, Cory C. Bomberger, Tahir Ghani, Jack T. Kavalieros, Benjamin Chu-Kung, Seung Hoon Sung, Siddharth Chouksey
  • Patent number: 11690215
    Abstract: A method is described. The method includes forming bit line structures above bitline contact structures, forming a first material on top surfaces and sidewall surfaces of the bit line structures to establish step structures for via formation, and forming a second material on the top surface of the first material. Capacitor landing structures are formed by patterning the second material.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: June 27, 2023
    Assignee: Intel Corporation
    Inventors: Abhishek A. Sharma, Van H. Le, Jack T. Kavalieros, Tahir Ghani, Yih Wang, Benjamin Chu-Kung, Shriram Shivaraman
  • Patent number: 11658222
    Abstract: An embodiment includes an apparatus comprising: a substrate; a thin film transistor (TFT) comprising: source, drain, and gate contacts; a semiconductor material, comprising a channel, between the substrate and the gate contact; a gate dielectric layer between the gate contact and the channel; and an additional layer between the channel and the substrate; wherein (a)(i) the channel includes carriers selected from the group consisting of hole carriers or electron carriers, (a)(ii) the additional layer includes an insulator material that includes charged particles having a polarity equal to a polarity of the carriers. Other embodiments are described herein.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: May 23, 2023
    Assignee: Intel Corporation
    Inventors: Abhishek A. Sharma, Van H. Le, Jack T. Kavalieros, Tahir Ghani, Gilbert Dewey, Shriram Shivaraman, Sean T. Ma, Benjamin Chu-Kung
  • Patent number: 11637185
    Abstract: Embodiments herein describe techniques for an integrated circuit that includes a substrate, a semiconductor device on the substrate, and a contact stack above the substrate and coupled to the semiconductor device. The contact stack includes a contact metal layer, and a semiconducting oxide layer adjacent to the contact metal layer. The semiconducting oxide layer includes a semiconducting oxide material, while the contact metal layer includes a metal with a sufficient Schottky-barrier height to induce an interfacial electric field between the semiconducting oxide layer and the contact metal layer to reject interstitial hydrogen from entering the semiconductor device through the contact stack. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: April 25, 2023
    Assignee: Intel Corporation
    Inventors: Justin Weber, Harold Kennel, Abhishek Sharma, Christopher Jezewski, Matthew V. Metz, Tahir Ghani, Jack T. Kavalieros, Benjamin Chu-Kung, Van H. Le, Arnab Sen Gupta
  • Patent number: 11626519
    Abstract: Embodiments of the invention include non-planar InGaZnO (IGZO) transistors and methods of forming such devices. In an embodiment, the IGZO transistor may include a substrate and source and drain regions formed over the substrate. According to an embodiment, an IGZO layer may be formed above the substrate and may be electrically coupled to the source region and the drain region. Further embodiments include a gate electrode that is separated from the IGZO layer by a gate dielectric. In an embodiment, the gate dielectric contacts more than one surface of the IGZO layer. In one embodiment, the IGZO transistor is a finfet transistor. In another embodiment the IGZO transistor is a nanowire or a nanoribbon transistor. Embodiments of the invention may also include a non-planar IGZO transistor that is formed in the back end of line stack (BEOL) of an integrated circuit chip.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: April 11, 2023
    Assignee: Intel Corporation
    Inventors: Van H. Le, Gilbert Dewey, Rafael Rios, Jack T. Kavalieros, Marko Radosavljevic, Kent E. Millard, Marc C. French, Ashish Agrawal, Benjamin Chu-Kung, Ryan E. Arch