Patents by Inventor Benjamin J. Haasl

Benjamin J. Haasl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190201696
    Abstract: A ventricular implantable medical device that is configured to detect an atrial timing fiducial from the ventricle. The ventricular implantable medical is configured to deliver a ventricular pacing therapy to the ventricle based on the detected atrial timing fiducial. If the ventricular implantable medical device temporarily fails to detect atrial activity because of noise, posture, patient activity or for any other reason, an atrial implantable medical device may be configured to communicate atrial events to the ventricular implantable medical device and the ventricular implantable medical device may synchronize the ventricular pacing therapy with the atrium activity based on those communications.
    Type: Application
    Filed: January 3, 2019
    Publication date: July 4, 2019
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Brendan Early Koop, Jeffrey E. Stahmann, Allan Charles Shuros, Keith R. Maile, Benjamin J. Haasl
  • Publication number: 20190192864
    Abstract: A leadless pacing device may include a housing having a proximal end and a distal end, and a set of one or more electrodes supported by the housing. The housing may include a first a distal extension extending distally from the distal end thereof. The distal extension may include a retractable and/or rotatable distal electrode. The distal electrode may be configured to be delivered to and pace at the Bundle of His. The leadless pacing device may be releasably coupled to an expandable anchor mechanism.
    Type: Application
    Filed: December 19, 2018
    Publication date: June 27, 2019
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: BRENDAN EARLY KOOP, BENJAMIN J. HAASL, ALLAN CHARLES SHUROS, JAMES O. GILKERSON, LILI LIU, KEITH R. MAILE, BRIAN SOLTIS, BRANDON CHRISTOPHER FELLOWS
  • Publication number: 20190192816
    Abstract: Delivery devices, systems, and methods for delivering implantable leadless pacing devices are disclosed. An example delivery device may include a proximal section including a deflection mechanism for deflecting the proximal section, and a distal holding section extending distally of a distal end of the proximal section and defining a cavity therein for receiving an implantable leadless pacing device. The delivery device may include more than one deflection mechanism for deflecting the proximal section at multiple deflection regions. The delivery device may include more than one tubular member that are translatable relative to one another, and the one or more tubular members may include fixed curve portions. The delivery device may include an atraumatic or bumper tip at the distal end of the holding section.
    Type: Application
    Filed: March 4, 2019
    Publication date: June 27, 2019
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Brian L. Schmidt, Benjamin J. Haasl, Keith R. Maile, Eric Bielefeld, Dana Sachs, Adwait Kumar, Indaka Gunasekara
  • Publication number: 20190192863
    Abstract: A leadless pacing device may include a housing having a proximal end and a distal end, and a set of one or more electrodes supported by the housing. The housing may include a first a distal extension extending distally from the distal end thereof. One or more electrodes may be supported by the distal extension. The leadless pacing device may be releasably coupled to an expandable anchor mechanism.
    Type: Application
    Filed: December 19, 2018
    Publication date: June 27, 2019
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: BRENDAN EARLY KOOP, BENJAMIN J. HAASL, ALLAN CHARLES SHUROS, JAMES O. GILKERSON, LILI LIU, KEITH R. MAILE, BRIAN SOLTIS, BRANDON CHRISTOPHER FELLOWS
  • Patent number: 10328272
    Abstract: An implantable medical device (IMD) may include an outer housing having a titanium outer surface, the titanium outer surface including a plurality of titanium atoms. A tissue growth-inhibiting layer may extend over the titanium outer surface. In some cases, the tissue growth-inhibiting layer may include a plurality of polyethylene glycol molecules, at least some of the plurality of polyethylene glycol molecules covalently bonded via an ether bond to one of the plurality of titanium atoms.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: June 25, 2019
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Joseph Thomas Delanely, Jr., Michael J. Kane, Benjamin J. Haasl, Danielle Frankson
  • Publication number: 20190167991
    Abstract: A ventricularly implantable medical device that includes a sensing module that is configured to detect an atrial fiducial and identify an atrial contraction based at least on part on the detected atrial fiducial. Control circuitry in the implantable medical device is configured to deliver a ventricular pacing therapy to a patient's heart based at least in part on the identified atrial contraction, and can automatically switch or revert the ventricular pacing therapies on the fly.
    Type: Application
    Filed: November 29, 2018
    Publication date: June 6, 2019
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Jeffrey E. Stahmann, Keith R. Maile, Krzysztof Z. Siejko, Allan Charles Shuros, William J. Linder, Benjamin J. Haasl, Brendan Early Koop, Michael J. Kane
  • Publication number: 20190168008
    Abstract: A ventricularly implantable medical device that includes a sensing module that is configured to identify a search window of time within a cardiac cycle to search for an atrial artifact. Control circuitry in the ventricular implantable medical device is configured to deliver a ventricular pacing therapy to a patient's heart, wherein the ventricular pacing therapy is time dependent, at least in part, on an atrial event identified in the search window of time.
    Type: Application
    Filed: November 29, 2018
    Publication date: June 6, 2019
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Keith R. Maile, Jeffrey E. Stahmann, Michael J. Kane, Benjamin J. Haasl, Krzysztof Z. Siejko, Allan Charles Shuros, William J. Linder, Brendan Early Koop
  • Publication number: 20190167972
    Abstract: A ventricularly implantable medical device that includes a sensing module that is configured to detect an artifact during ventricular filling and to identify an atrial event based at least on part on the detected artifact. Control circuitry of the implantable medical device is configured to deliver a ventricular pacing therapy to a patient's heart, wherein the ventricular pacing therapy is time dependent, at least in part, on the identified atrial event.
    Type: Application
    Filed: November 27, 2018
    Publication date: June 6, 2019
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Jeffrey E. Stahmann, Keith R. Maile, Krzysztof Z. Siejko, Allan Charles Shuros, William J. Linder, Benjamin J. Haasl, Michael J. Kane, Brendan Early Koop
  • Patent number: 10286220
    Abstract: An implantable leadless cardiac pacing device and associated delivery and retrieval devices. The implantable device includes a docking member extending from the proximal end of the housing of the implantable device configured to engage with the delivery and/or retrieval device to facilitate delivery and/or retrieval of the implantable leadless cardiac pacing device.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: May 14, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Brian L. Schmidt, Benjamin J. Haasl, Keith R. Maile, Dana Sachs
  • Publication number: 20190117972
    Abstract: Embodiments herein relate to medical device systems including electric field shaping elements for use in treating cancerous tumors within a bodily tissue. In an embodiment, a medical device system for treating a cancerous tumor is described. The medical device system can include one or more electric field generating electrodes and an electric field shaping element configured to be implanted along with the one or more electric field generating electrodes. The electric field shaping element can be made from a material that alters the spatial area of tissue exposed to the electric field. Other embodiments are also included herein.
    Type: Application
    Filed: October 22, 2018
    Publication date: April 25, 2019
    Inventors: Brian L. Schmidt, Jacob M. Ludwig, Benjamin J. Haasl, Michael J. Kane
  • Publication number: 20190117973
    Abstract: Embodiments herein relate to medical device systems including electric field shaping elements for use in treating cancerous tumors within a bodily tissue. In an embodiment, a method for treating a cancerous tumor is provided. The method can include implanting one or more electrodes within a patient and measuring the impedance of tissue within the patient along a vector passing through or near a cancerous tumor. The method can also include administering an electric field to the cancerous tumor of the patient based on the measured impedance. Other embodiments are also included herein.
    Type: Application
    Filed: October 22, 2018
    Publication date: April 25, 2019
    Inventors: Brian L. Schmidt, Jacob M. Ludwig, Benjamin J. Haasl, Michael J. Kane
  • Publication number: 20190117969
    Abstract: Embodiments herein include medical devices and methods for using the same to treat cancerous tumors within a bodily tissue. In an embodiment, a medical device is included. The medical device can include an electric field generating circuit configured to generate one or more electric fields and control circuitry in communication with the electric field generating circuit. The control circuitry can be configured to control the generation of one or more electric fields from the electric field generating circuit. The control circuitry can cause the electric field generating circuit to deliver one or more electric fields at one or more frequencies selected from a range of between 10 kHz to 1 MHz to a cancerous tumor located within a bodily tissue. Other embodiments are also included herein.
    Type: Application
    Filed: October 22, 2018
    Publication date: April 25, 2019
    Inventors: Brian L. Schmidt, Jacob M. Ludwig, Benjamin J. Haasl, Michael J. Kane
  • Publication number: 20190117970
    Abstract: Embodiments herein relate to medical devices including electric field shaping leads and methods for using the same to treat cancerous tumors within a bodily tissue. In an embodiment, an implantable lead for a cancer treatment system is disclosed. The lead can include a lead body having a proximal end and a distal end, where the lead body can define a lumen. The lead can also include a paddle disposed at the distal end of the lead body, the paddle having a width that is greater than a width of the lead body. The paddle can include one or more electrodes disposed on the paddle and one or more electrical conductors disposed within the lumen of the lead body to provide electrical communication between the one or more electrodes and the proximal end of the lead body. Other embodiments are also included herein.
    Type: Application
    Filed: October 22, 2018
    Publication date: April 25, 2019
    Inventors: Brian L. Schmidt, Jacob M. Ludwig, Benjamin J. Haasl, Michael J. Kane
  • Publication number: 20190117971
    Abstract: Embodiments herein relate to medical devices including volume filling leads and methods of use to treat cancerous tumors within a bodily tissue. In an embodiment, a lead for a cancer treatment system is described. The lead can include a lead body having a proximal end and a distal end, where the lead body can define a lumen. The lead can include an expandable lead head connected to the distal end of the lead body, where the lead head can be configured to be expanded between a first non-expanded position and a second expanded position in order to fill an intracorporeal void. The lead can include two or more electrodes disposed on an outer surface of the lead head and two or more electrical conductors configured to provide electrical communication between the two or more electrodes and the proximal end of the lead body. Other embodiments are also included herein.
    Type: Application
    Filed: October 22, 2018
    Publication date: April 25, 2019
    Inventors: Brian L. Schmidt, Jacob M. Ludwig, Benjamin J. Haasl, Michael J. Kane
  • Patent number: 10265503
    Abstract: Delivery devices, systems, and methods for delivering implantable leadless pacing devices are disclosed. An example delivery device may include a proximal section including a deflection mechanism for deflecting the proximal section, and a distal holding section extending distally of a distal end of the proximal section and defining a cavity therein for receiving an implantable leadless pacing device. The delivery device may include more than one deflection mechanism for deflecting the proximal section at multiple deflection regions. The delivery device may include more than one tubular member that are translatable relative to one another, and the one or more tubular members may include fixed curve portions. The delivery device may include an atraumatic or bumper tip at the distal end of the holding section.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: April 23, 2019
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Brian L. Schmidt, Benjamin J. Haasl, Keith R. Maile, Eric Bielefeld, Dana Sachs, Adwait Kumar, Indaka Gunasekara
  • Patent number: 10258802
    Abstract: Delivery devices, systems, and methods for delivering implantable leadless pacing devices are disclosed. An example delivery system may comprise a delivery device, an implantable leadless pacing device, and a tether. The tether may be made of a material which allows for a lubricious, strong, no stretch, no memory tether. The tether may releasably secure the implantable leadless pacing device to the delivery device.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: April 16, 2019
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Brian Soltis, Kurt G. Koubal, Benjamin J. Haasl, Ronald W. Kunkel, Brian L. Schmidt
  • Publication number: 20190105492
    Abstract: Implantable leadless pacing devices and medical device systems including an implantable leadless pacing device are disclosed. An example implantable leadless pacing device may include a pacing capsule. The pacing capsule may include a housing. The housing may have a proximal region and a distal region. A first electrode may be disposed along the distal region. One or more anchoring members may be coupled to the distal region. The anchoring members may each include a region with a compound curve.
    Type: Application
    Filed: December 5, 2018
    Publication date: April 11, 2019
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: BENJAMIN J. HAASL, DANA SACHS, KEITH R. MAILE
  • Publication number: 20190083791
    Abstract: Systems, methods, and devices for determining occurrences of a tamponade condition are disclosed. One exemplary method includes monitoring an accelerometer signal of a leadless cardiac pacemaker attached to a heart wall, determining if a tamponade condition of the patient's heart is indicated based at least in part on the monitored accelerometer signal, and in response to determining that the tamponade condition is indicated, providing a notification of the tamponade condition for use by a physician to take corrective action.
    Type: Application
    Filed: November 15, 2018
    Publication date: March 21, 2019
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Michael J. Kane, Allan Charles Shuros, Brian L. Schmidt, Keith R. Maile, Benjamin J. Haasl
  • Patent number: 10226631
    Abstract: Systems, devices, and methods for determining occurrences of myocardial infarctions are disclosed. In one embodiment, a method of sensing for an occurrence of a myocardial infarction may include sensing a baseline accelerometer signal during a baseline, determining a baseline template based on one or more characteristics of the baseline accelerometer signal, and storing the baseline template in a memory. The method may further include sensing an accelerometer signal during a test period subsequent to the baseline, determining a test template based on one or more characteristics of the accelerometer signal during the test period, and comparing the baseline template with the test template, and based on the comparison, determining if a myocardial infarction occurred in the patient's heart. If it is determined that a myocardial infarction occurred in the patient's heart, the method may further include displaying an indication on a display that a myocardial infarction occurred.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: March 12, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. Kane, Allan Charles Shuros, Brian L. Schmidt, Keith R. Maile, Benjamin J. Haasl
  • Publication number: 20190038906
    Abstract: Delivery devices, systems, and methods for delivering implantable leadless pacing devices are disclosed. An example delivery device may include an outer tubular member including a lumen extending from a proximal end to a distal end thereof and an intermediate tubular member including a lumen extending from a proximal end to a distal end thereof. A distal holding section may be coupled to the intermediate tubular member and define a cavity therein for receiving a proximal implantable leadless pacing device and a distal implantable leadless pacing device in a linear arrangement. The distal holding section may have a proximal body portion and a distal body portion. The proximal body portion may be more flexible than the distal body portion. An inner tubular member including a lumen extending from a proximal end to a distal end thereof may be slidably disposed within the lumen of the intermediate tubular member.
    Type: Application
    Filed: August 2, 2018
    Publication date: February 7, 2019
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: BRENDAN EARLY KOOP, BENJAMIN J. HAASL