Patents by Inventor Benjamin J. Haasl

Benjamin J. Haasl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190027775
    Abstract: A battery having flat, stacked, anode and cathode layers. The battery can be adapted to fit within an implantable medical device.
    Type: Application
    Filed: September 26, 2018
    Publication date: January 24, 2019
    Inventors: Michael J. O'Phelan, Tom G. Victor, Benjamin J. Haasl, Lawrence D. Swanson, Richard J. Kavanagh, A. Gordon Barr, Reilly M. Dillon
  • Publication number: 20190022379
    Abstract: A device for the active fixation of an implantable medical lead includes a housing, a tine assembly, and rotatable shaft. The housing includes a proximal end for connecting to the lead and a distal end opposite the proximal end. The housing defines a housing lumen having a longitudinal axis extending between the proximal end and the distal end. The tine assembly is disposed within the housing lumen. The tine assembly includes at least one tine configured to self-bias from a linear configuration within the housing to a curved configuration outside of the housing. The rotatable shaft extends through the housing lumen. The shaft is configured to engage the tine assembly such that rotation of the shaft transitions the at least one tine between the linear configuration and the curved configuration.
    Type: Application
    Filed: July 18, 2018
    Publication date: January 24, 2019
    Inventors: Arthur J. Foster, Benjamin J. Haasl, Linda L. Evert, G. Shantanu Reddy
  • Patent number: 10179236
    Abstract: Implantable leadless pacing devices and medical device systems including an implantable leadless pacing device are disclosed. An example implantable leadless pacing device may include a pacing capsule. The pacing capsule may include a housing. The housing may have a proximal region and a distal region. A first electrode may be disposed along the distal region. One or more anchoring members may be coupled to the distal region. The anchoring members may each include a region with a compound curve.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: January 15, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Benjamin J. Haasl, Dana Sachs, Keith R. Maile
  • Patent number: 10179237
    Abstract: Systems, methods, and devices for detecting dislodgment of an implantable device are disclosed. In one example, a method for determining a dislodgement status may comprise collecting, by the implantable device operating in a first operating mode, a first number of accelerometer signal samples during a cardiac cycle of the heart and using the first number of accelerometer signal samples to determine a first patient parameter and collecting, by the implantable device operating in a second operating mode, a second number of accelerometer signal samples during a cardiac cycle of the heart and using the second number of accelerometer signal samples to determine a dislodgment status of the implantable device, wherein the first number is smaller than the second number. In some further embodiments, the method may further include providing a notification of the dislodgment status to a remote device that is remote from the implantable medical device.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: January 15, 2019
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Michael J. Kane, Allan Charles Shuros, Brian L. Schmidt, Keith R. Maile, Benjamin J. Haasl
  • Publication number: 20190001119
    Abstract: An implantable leadless cardiac pacing device including a housing having a proximal end and a distal end, an electrode positioned proximate the distal end of the housing configured to be positioned adjacent cardiac tissue, and a tissue anchoring member extending from the distal end of the housing configured to secure the housing to cardiac tissue. The device further includes a tissue engagement verification feature configured to provide feedback upon engagement of the tissue anchoring member in cardiac tissue.
    Type: Application
    Filed: August 22, 2018
    Publication date: January 3, 2019
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Brian L. Schmidt, Benjamin J. Haasl, John M. Edgell, Dana Sachs
  • Patent number: 10159842
    Abstract: Systems, methods, and devices for determining occurrences of a tamponade condition are disclosed. One exemplary method includes monitoring an accelerometer signal of a leadless cardiac pacemaker attached to a heart wall, determining if a tamponade condition of the patient's heart is indicated based at least in part on the monitored accelerometer signal, and in response to determining that the tamponade condition is indicated, providing a notification of the tamponade condition for use by a physician to take corrective action.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: December 25, 2018
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. Kane, Allan Charles Shuros, Brian L. Schmidt, Keith R. Maile, Benjamin J. Haasl
  • Patent number: 10137305
    Abstract: Systems, devices, and methods for adjusting functionality of an implantable medical device based on posture are disclosed. In some instances, a method for operating a leadless cardiac pacemaker implanted into a patient, where the patient has two or more predefined behavioral states, may include detecting a change in the behavioral state of the patient, and in response, changing a sampling rate of a sensor signal generated by a sensor of the leadless cardiac pacemaker. In some embodiments, the method may further include using the sampled sensor signal to determine an updated pacing rate of the leadless cardiac pacemaker and providing pacing to the patient at the updated pacing rate.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: November 27, 2018
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. Kane, William J. Linder, Lance Eric Juffer, Benjamin J. Haasl, Brian L. Schmidt, Paul Huelskamp, Keith R. Maile
  • Patent number: 10115995
    Abstract: A battery having flat, stacked, anode and cathode layers. The battery can be adapted to fit within an implantable medical device.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: October 30, 2018
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, Tom G. Victor, Benjamin J. Haasl, Lawrence D. Swanson, Richard J. Kavanagh, A. Gordon Barr, Reilly M. Dillon
  • Patent number: 10092760
    Abstract: Systems, methods, and devices for detecting or confirming fibrillation are discussed. In one example, a method for detecting a cardiac arrhythmia of a patients' heart comprises receiving, by a leadless cardiac pacemaker fixed in the patients' heart, an indication from a remote device that a cardiac arrhythmia is detected, monitoring by the leadless cardiac pacemaker a signal generated by a sensor that is located within the patients' heart, and based at least in part on the monitored signal, confirming whether a cardiac arrhythmia is occurring or not. In some embodiments, the method may further comprise, if a cardiac arrhythmia is confirmed, delivering a therapy to treat the cardiac arrhythmia.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: October 9, 2018
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Michael J. Kane, Allan Charles Shuros, Brian L. Schmidt, Paul Huelskamp, Benjamin J. Haasl
  • Patent number: 10080887
    Abstract: An implantable leadless cardiac pacing device including a housing having a proximal end and a distal end, an electrode positioned proximate the distal end of the housing configured to be positioned adjacent cardiac tissue, and a tissue anchoring member extending from the distal end of the housing configured to secure the housing to cardiac tissue. The device further includes a tissue engagement verification feature configured to provide feedback upon engagement of the tissue anchoring member in cardiac tissue.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: September 25, 2018
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Brian L. Schmidt, Benjamin J. Haasl, John M. Edgell, Dana Sachs
  • Publication number: 20180264274
    Abstract: A leadless pacing device may include a housing having a proximal end and a distal end, and a set of one or more electrodes supported by the housing. The housing may include a first portion and a second portion, with a guide wire port extending through the second portion. A guide wire lumen may extend through the second portion of the housing and the guide wire port may be located at a proximal end of the guide wire lumen. An exposed electrode may be located on a side of the housing that is opposite a side on which the guide wire port is located. The leadless pacing device may include a fixing member on the housing and extending radially from the housing. The leadless pacing device may further include a proximal member extending proximally from a proximal end of the housing. The proximal member may be elongated.
    Type: Application
    Filed: March 19, 2018
    Publication date: September 20, 2018
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: BENJAMIN J. HAASL, DANA SACHS, ALLAN CHARLES SHUROS
  • Publication number: 20180264262
    Abstract: A leadless pacing device may include a housing, a distal extension extending distally of a distal end of the housing, one or more electrodes supported by the housing, a distal electrode supported by the distal extension, and a processing module located within an interior space of the housing and electrically coupled to the one or more electrodes supported by the housing and the distal electrode supported by the distal extension. The housing may be positioned within a coronary sinus and the distal extension may be positioned within a vessel extending from the coronary sinus. The processing module may determine whether cardiac events occurred based on near-field signals and/or far-field signals sensed using the one or more electrodes supported by the housing and the distal electrode. The processing module may generate cardiac stimulation pulses based on the determination of whether a cardiac event occurred and where it occurred.
    Type: Application
    Filed: March 19, 2018
    Publication date: September 20, 2018
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: BENJAMIN J. HAASL, LILI LIU, ALLAN CHARLES SHUROS
  • Publication number: 20180264273
    Abstract: A leadless pacing device may include a power supply providing a power supply voltage, a housing having a first end, a second end, and a side extending between the first end and the second end, and a set of electrodes supported by the housing and in communication with the power supply. The housing may be angled to follow a contour of a patient's heart when the housing is positioned within the coronary sinus of the patient's heart. In some cases, an angled portion of the housing may include a smooth-curve. In some cases, an angled portion of the housing may include a first portion of the housing and a second portion of the housing at an angle of less than one-hundred-eighty degrees with respect to the first portion of the housing. One or more of the electrodes may be exposed on a concave side of the angled housing.
    Type: Application
    Filed: March 19, 2018
    Publication date: September 20, 2018
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: BENJAMIN J. HAASL, ALLAN CHARLES SHUROS, LILI LIU, G. SHANTANU REDDY
  • Publication number: 20180264272
    Abstract: A leadless pacing device may include a power supply for providing a power supply voltage, a housing having a first end and a second end with a side extending between the first end and the second end, and a set of electrodes supported by the housing and in communication with the power supply. When leadless pacing device is disposed within a coronary sinus of a patient's heart, the housing may facilitate blood flow across the housing. The housing may include fixing members extending radially outward from the side of the housing to engage a wall of the coronary sinus and expand the coronary sinus to allow blood to flow past the housing. In some cases, the housing may have a recess along a length thereof that allows blood to flow past the housing. The recess may include a groove, a flat feature, or other feature.
    Type: Application
    Filed: March 19, 2018
    Publication date: September 20, 2018
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: BENJAMIN J. HAASL, ALLAN CHARLES SHUROS, LILI LIU, G. SHANTANU REDDY
  • Publication number: 20180214688
    Abstract: Delivery devices, systems, and methods for delivering implantable leadless pacing devices are disclosed. An example delivery device may an outer tubular member and an inner tubular member slidably disposed within the lumen of the outer tubular member. A distal holding section may extend distally of a distal end of the inner tubular member and define a cavity therein for receiving an implantable leadless pacing device. The device may further include a hub portion including at least a first hub portion affixed adjacent to the proximal end of the outer tubular member and a second hub portion affixed adjacent to the proximal end of the inner tubular member. A first locking mechanism configured to releasably couple the outer tubular member and the inner tubular member may be disposed within the hub portion.
    Type: Application
    Filed: March 26, 2018
    Publication date: August 2, 2018
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: BENJAMIN J. HAASL, BRIAN L. SCHMIDT
  • Publication number: 20180207430
    Abstract: Delivery devices, systems, and methods for delivering implantable leadless pacing devices are disclosed. An example delivery device may include an intermediate tubular member and an inner tubular member slidably disposed within a lumen of the intermediate tubular member. A distal holding section may extend distally of a distal end of the intermediate tubular member and define a cavity therein for receiving an implantable leadless pacing device. The device may be configured to enable fluid flushing of the delivery device prior to use, to remove any air from within the device as well as providing the option of fluid flow during use of the delivery device.
    Type: Application
    Filed: January 25, 2018
    Publication date: July 26, 2018
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: BRIAN SOLTIS, BENJAMIN J. HAASL, JAMES P. GOODMAN, VINCENT P. HACKENMUELLER
  • Publication number: 20180207426
    Abstract: Methods and devices for configuring the use of a motion sensor in an implantable cardiac device. The electrical signals of the patient's heart are observed and may be correlated to the physical motion of the heart as detected by the motion sensor of the implantable cardiac device in order to facilitate temporal configuration of motion sensor data collection that avoids detecting cardiac motion in favor of overall motion of the patient.
    Type: Application
    Filed: March 26, 2018
    Publication date: July 26, 2018
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Michael J. Kane, William J. Linder, Benjamin J. Haasl, Paul Huelskamp, Keith R. Maile, Ron A. Balczewski, Bin Mi, John D. Hatlestad, Allan Charles Shuros
  • Patent number: 10029104
    Abstract: An implantable medical device includes operational circuitry, such as a therapy circuit. The implantable medical device also includes a power source configured to deliver energy to the operational circuitry, and a deactivation element configured to disable the therapy circuit. A power manager is configured to detect an end-of-life condition of the power source and, in response to detecting the end-of-life condition, cause the deactivation element to reversibly disable the therapy circuit.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: July 24, 2018
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jeffrey E. Stahmann, Benjamin J. Haasl, Keith R. Maile, William J. Linder
  • Publication number: 20180177979
    Abstract: Catheter and implantable leadless pacing devices, systems, and methods utilizing catheters and implantable leadless pacing devices are disclosed. An example catheter system may include a holding structure extending distally from a tubular member. An implantable device, such as a leadless pacing device, may be located within a cavity of the holding structure. The holding structure may include one or more electrical ports adjacent the proximal end of the holding structure and adjacent or proximal of the proximal end of the implantable device. The electrical ports may provide a conductive pathway extending through the distal structure to allow electrical signals to pass through the distal structure to and/or from the implantable device.
    Type: Application
    Filed: December 22, 2017
    Publication date: June 28, 2018
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: BRIAN SOLTIS, BRENDAN E. KOOP, BENJAMIN J. HAASL, KURT G. KOUBAL, JAMES P. GOODMAN, VINCENT P. HACKENMUELLER
  • Publication number: 20180126179
    Abstract: An implantable medical device (IMD) may be deployed within a patient's right atrium at a location near a right atrial appendage of the patient's heart in order to pace the patient's heart and/or to sense electrical activity within the patient's heart. In some cases, an IMD may be implanted within the right atrial appendage. The IMD may include an expandable anchoring mechanism configured to secure the IMD in place.
    Type: Application
    Filed: November 6, 2017
    Publication date: May 10, 2018
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Benjamin J. Haasl, Michael J. Kane, Arthur J. Foster, Lance Eric Juffer, Michael J. Johnson, Keith R. Maile, Brian L. Schmidt, Brendan Early Koop