Patents by Inventor Benjamin P. Smith

Benjamin P. Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10320425
    Abstract: In staircase forward error correction coding, a stream of data symbols are mapped to data symbol positions in a sequence of two-dimensional symbol blocks Bi, a positive integer. Each of the symbol blocks has data symbol positions and coding symbol positions. Coding symbols for the coding symbol positions in each symbol block Bi in the sequence are computed. The coding symbols are computed such that, for each symbol block Bi that has a preceding symbol block Bi?1 and a subsequent symbol block Bi+1 in the sequence, symbols at symbol positions along one dimension of the preceding symbol block Bi?1, concatenated with the data symbols and the coding symbols along the other dimension in the symbol Bi, form a codeword of a FEC component code, and symbols at symbol positions along the one dimension of the symbol Bi, concatenated with the data symbols and the coding symbols along the other dimension in the subsequent symbol block Bi+1, form a codeword of the FEC component code.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: June 11, 2019
    Assignee: INPHI CORPORATION
    Inventors: Arash Farhoodfar, Frank R. Kschischang, Andrew Hunt, Benjamin P. Smith, John Lodge
  • Publication number: 20190158189
    Abstract: A circuit and method for mitigating multi-path interference in direct detection optical systems is provided. Samples of an optical signal having a pulse amplitude modulated (PAM) E-field are processed by generating a PAM level for each sample. For each sample, the sample is subtracted from the respective PAM level to generate a corresponding error sample. The error samples are lowpass filtered to produce estimates of multi-path interference (MPI). For each sample, one of the estimates of MPI is combined with the sample to produce an interference-mitigated sample.
    Type: Application
    Filed: January 28, 2019
    Publication date: May 23, 2019
    Inventors: Benjamin P. SMITH, Jamal RIANI, Sudeep BHOJA, Arash FARHOODFAR, Vipul BHATT
  • Patent number: 10236994
    Abstract: A circuit and method for mitigating multi-path interference in direct detection optical systems is provided. Samples of an optical signal having a pulse amplitude modulated (PAM) E-field are processed by generating a PAM level for each sample. For each sample, the sample is subtracted from the respective PAM level to generate a corresponding error sample. The error samples are lowpass filtered to produce estimates of multi-path interference (MPI). For each sample, one of the estimates of MPI is combined with the sample to produce an interference-mitigated sample.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: March 19, 2019
    Assignee: INPHI CORPORATION
    Inventors: Benjamin P. Smith, Jamal Riani, Sudeep Bhoja, Arash Farhoodfar, Vipul Bhatt
  • Publication number: 20190044653
    Abstract: An optical module processes first FEC (Forward Error Correction) encoded data produced by a first FEC encoder. The optical module has a second FEC encoder for further coding a subset of the first FEC encoded data to produce second FEC encoded data. The optical module also has an optical modulator for modulating, based on a combination of the second FEC encoded data and a remaining portion of the first FEC encoded data that is not further coded, an optical signal for transmission over an optical channel. The second FEC encoder is an encoder for an FEC code that has a bit-level trellis representation with a number of states in any section of the bit-level trellis representation being less than or equal to 64 states. In this manner, the second FEC encoder has relatively low complexity (e.g. relatively low transistor count) that can reduce power consumption for the optical module.
    Type: Application
    Filed: October 9, 2018
    Publication date: February 7, 2019
    Inventors: Benjamin P. SMITH, Arash FARHOODFAR
  • Publication number: 20190020356
    Abstract: Multiple data permutation operations in respective different dimensions are used to provide an overall effective data permutation using smaller blocks of data in each permutation than would be used in directly implementing the overall permutation in a single permutation operation. Data that has been permuted in one permutation operation is block interleaved, and the interleaved data is then permuted in a subsequent permutation operation. A matrix transpose is one example of block interleaving that could be applied between permutation operations.
    Type: Application
    Filed: September 18, 2018
    Publication date: January 17, 2019
    Inventors: Arash FARHOODFAR, Frank R. KSCHISCHANG, Benjamin P. SMITH, Andrew HUNT
  • Patent number: 10128980
    Abstract: An optical module processes first FEC (Forward Error Correction) encoded data produced by a first FEC encoder. The optical module has a second FEC encoder for further coding a subset of the first FEC encoded data to produce second FEC encoded data. The optical module also has an optical modulator for modulating, based on a combination of the second FEC encoded data and a remaining portion of the first FEC encoded data that is not further coded, an optical signal for transmission over an optical channel. The second FEC encoder is an encoder for an FEC code that has a bit-level trellis representation with a number of states in any section of the bit-level trellis representation being less than or equal to 64 states. In this manner, the second FEC encoder has relatively low complexity (e.g. relatively low transistor count) that can reduce power consumption for the optical module.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: November 13, 2018
    Assignee: INPHI CORPORATION
    Inventors: Benjamin P. Smith, Arash Farhoodfar
  • Patent number: 10110252
    Abstract: Multiple data permutation operations in respective different dimensions are used to provide an overall effective data permutation using smaller blocks of data in each permutation than would be used in directly implementing the overall permutation in a single permutation operation. Data that has been permuted in one permutation operation is block interleaved, and the interleaved data is then permuted in a subsequent permutation operation. A matrix transpose is one example of block interleaving that could be applied between permutation operations.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: October 23, 2018
    Assignee: INPHI CORPORATION
    Inventors: Arash Farhoodfar, Frank R. Kschischang, Benjamin P. Smith, Andrew Hunt
  • Publication number: 20180102852
    Abstract: A circuit and method for mitigating multi-path interference in direct detection optical systems is provided. Samples of an optical signal having a pulse amplitude modulated (PAM) E-field are processed by generating a PAM level for each sample. For each sample, the sample is subtracted from the respective PAM level to generate a corresponding error sample. The error samples are lowpass filtered to produce estimates of multi-path interference (MPI). For each sample, one of the estimates of MPI is combined with the sample to produce an interference-mitigated sample.
    Type: Application
    Filed: December 8, 2017
    Publication date: April 12, 2018
    Inventors: Benjamin P. SMITH, Jamal RIANI, Sudeep BHOJA, Arash FARHOODFAR, Vipul BHATT
  • Patent number: 9876581
    Abstract: A circuit and method for mitigating multi-path interference in direct detection optical systems is provided. Samples of an optical signal having a pulse amplitude modulated (PAM) E-field are processed by generating a PAM level for each sample. For each sample, the sample is subtracted from the respective PAM level to generate a corresponding error sample. The error samples are lowpass filtered to produce estimates of multi-path interference (MPI). For each sample, one of the estimates of MPI is combined with the sample to produce an interference-mitigated sample.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: January 23, 2018
    Assignee: INPHI CORPORATION
    Inventors: Benjamin P. Smith, Jamal Riani, Sudeep Bhoja, Arash Farhoodfar, Vipul Bhatt
  • Publication number: 20170230140
    Abstract: An optical module processes first FEC (Forward Error Correction) encoded data produced by a first FEC encoder. The optical module has a second FEC encoder for further coding a subset of the first FEC encoded data to produce second FEC encoded data. The optical module also has an optical modulator for modulating, based on a combination of the second FEC encoded data and a remaining portion of the first FEC encoded data that is not further coded, an optical signal for transmission over an optical channel. The second FEC encoder is an encoder for an FEC code that has a bit-level trellis representation with a number of states in any section of the bit-level trellis representation being less than or equal to 64 states. In this manner, the second FEC encoder has relatively low complexity (e.g. relatively low transistor count) that can reduce power consumption for the optical module.
    Type: Application
    Filed: April 21, 2017
    Publication date: August 10, 2017
    Inventors: Benjamin P. SMITH, Arash FARHOODFAR
  • Publication number: 20170230119
    Abstract: A circuit and method for mitigating multi-path interference in direct detection optical systems is provided. Samples of an optical signal having a pulse amplitude modulated (PAM) E-field are processed by generating a PAM level for each sample. For each sample, the sample is subtracted from the respective PAM level to generate a corresponding error sample. The error samples are lowpass filtered to produce estimates of multi-path interference (MPI). For each sample, one of the estimates of MPI is combined with the sample to produce an interference-mitigated sample.
    Type: Application
    Filed: February 10, 2016
    Publication date: August 10, 2017
    Inventors: Benjamin P. Smith, Jamal Riani, Sudeep Bhoja, Arash Farhoodfar, Vipul Bhatt
  • Patent number: 9660841
    Abstract: Receiver circuitry is disclosed that can take circuit branches offline to possibly adapt an offset value. In one embodiment, a circuit in a receiver has at least two branches. Each branch includes an adjustor to adjust the branch signal by an offset value. Selection circuitry takes one of the branches offline by selecting the output of that branch as an offline value, and by selecting the output of one or more of the other branches as a data decision value. The selection circuitry changes which branch is taken offline during the operation of the circuit. When a branch is taken offline, an offset value associated with that branch may be updated, if necessary.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: May 23, 2017
    Assignee: INPHI CORPORATION
    Inventors: Stephane Dallaire, Benjamin P. Smith, Travis William Lovitt, Arash Farhoodfar
  • Patent number: 9654253
    Abstract: An optical module processes first FEC (Forward Error Correction) encoded data produced by a first FEC encoder. The optical module has a second FEC encoder for further coding a subset of the first FEC encoded data to produce second FEC encoded data. The optical module also has an optical modulator for modulating, based on a combination of the second FEC encoded data and a remaining portion of the first FEC encoded data that is not further coded, an optical signal for transmission over an optical channel. The second FEC encoder is an encoder for an FEC code that has a bit-level trellis representation with a number of states in any section of the bit-level trellis representation being less than or equal to 256 states. In this manner, the second FEC encoder has relatively low complexity (e.g. relatively low transistor count) that can reduce power consumption for the optical module.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: May 16, 2017
    Assignee: INPHI CORPORATION
    Inventors: Benjamin P. Smith, Arash Farhoodfar
  • Publication number: 20170093436
    Abstract: Multiple data permutation operations in respective different dimensions are used to provide an overall effective data permutation using smaller blocks of data in each permutation than would be used in directly implementing the overall permutation in a single permutation operation. Data that has been permuted in one permutation operation is block interleaved, and the interleaved data is then permuted in a subsequent permutation operation. A matrix transpose is one example of block interleaving that could be applied between permutation operations.
    Type: Application
    Filed: December 14, 2016
    Publication date: March 30, 2017
    Inventors: Arash Farhoodfar, Frank R. Kschischang, Benjamin P. Smith, Andrew Hunt
  • Patent number: 9564926
    Abstract: Multiple data permutation operations in respective different dimensions are used to provide an overall effective data permutation using smaller blocks of data in each permutation than would be used in directly implementing the overall permutation in a single permutation operation. Data that has been permuted in one permutation operation is block interleaved, and the interleaved data is then permuted in a subsequent permutation operation. A matrix transpose is one example of block interleaving that could be applied between permutation operations.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: February 7, 2017
    Assignee: CORTINA SYSTEMS, INC.
    Inventors: Arash Farhoodfar, Frank R. Kschischang, Benjamin P. Smith, Andrew Hunt
  • Publication number: 20160380784
    Abstract: Receiver circuitry is disclosed that can take circuit branches offline to possibly adapt an offset value. In one embodiment, a circuit in a receiver has at least two branches. Each branch includes an adjustor to adjust the branch signal by an offset value. Selection circuitry takes one of the branches offline by selecting the output of that branch as an offline value, and by selecting the output of one or more of the other branches as a data decision value. The selection circuitry changes which branch is taken offline during the operation of the circuit. When a branch is taken offline, an offset value associated with that branch may be updated, if necessary.
    Type: Application
    Filed: September 9, 2016
    Publication date: December 29, 2016
    Inventors: Stephane DALLAIRE, Benjamin P. SMITH, Travis William LOVITT, Arash FARHOODFAR
  • Publication number: 20160308558
    Abstract: In staircase forward error correction coding, a stream of data symbols are mapped to data symbol positions in a sequence of two-dimensional symbol blocks Bi, a positive integer. Each of the symbol blocks has data symbol positions and coding symbol positions. Coding symbols for the coding symbol positions in each symbol block Bi in the sequence are computed. The coding symbols are computed such that, for each symbol block Bi that has a preceding symbol block Bi?1 and a subsequent symbol block Bi+1 in the sequence, symbols at symbol positions along one dimension of the preceding symbol block Bi?1, concatenated with the data symbols and the coding symbols along the other dimension in the symbol Bi, form a codeword of a FEC component code, and symbols at symbol positions along the one dimension of the symbol Bi, concatenated with the data symbols and the coding symbols along the other dimension in the subsequent symbol block Bi+1, form a codeword of the FEC component code.
    Type: Application
    Filed: June 27, 2016
    Publication date: October 20, 2016
    Inventors: Arash Farhoodfar, Frank R. Kschischang, Andrew Hunt, Benjamin P. Smith, John Lodge
  • Patent number: 9467315
    Abstract: Receiver circuitry is disclosed that can take circuit branches offline to possibly adapt an offset value. In one embodiment, a circuit in a receiver has at least two branches. Each branch includes an adjustor to adjust the branch signal by an offset value. Selection circuitry takes one of the branches offline by selecting the output of that branch as an offline value, and by selecting the output of one or more of the other branches as a data decision value. The selection circuitry changes which branch is taken offline during the operation of the circuit. When a branch is taken offline, an offset value associated with that branch may be updated, if necessary.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: October 11, 2016
    Assignee: Inphi Corporation
    Inventors: Stephane Dallaire, Benjamin P. Smith, Travis William Lovitt, Arash Farhoodfar
  • Patent number: 9397702
    Abstract: In staircase forward error correction coding, a stream of data symbols are mapped to data symbol positions in a sequence of two-dimensional symbol blocks Bi, i a positive integer. Each of the symbol blocks has data symbol positions and coding symbol positions. Coding symbols for the coding symbol positions in each symbol block Bi in the sequence are computed. The coding symbols are computed such that, for each symbol block Bi that has a preceding symbol block Bi?1 and a subsequent symbol block Bi+1 in the sequence, symbols at symbol positions along one dimension of the preceding symbol block Bi?1, concatenated with the data symbols and the coding symbols along the other dimension in the symbol block Bi, form a codeword of a FEC component code, and symbols at symbol positions along the one dimension of the symbol block Bi, concatenated with the data symbols and the coding symbols along the other dimension in the subsequent symbol block Bi+1, form a codeword of the FEC component code.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: July 19, 2016
    Assignee: Cortina Systems, Inc.
    Inventors: Arash Farhoodfar, Frank R. Kschischang, Andrew Hunt, Benjamin P. Smith, John Lodge
  • Publication number: 20160028562
    Abstract: Receiver circuitry is disclosed that can take circuit branches offline to possibly adapt an offset value. In one embodiment, a circuit in a receiver has at least two branches. Each branch includes an adjustor to adjust the branch signal by an offset value. Selection circuitry takes one of the branches offline by selecting the output of that branch as an offline value, and by selecting the output of one or more of the other branches as a data decision value. The selection circuitry changes which branch is taken offline during the operation of the circuit. When a branch is taken offline, an offset value associated with that branch may be updated, if necessary.
    Type: Application
    Filed: July 22, 2015
    Publication date: January 28, 2016
    Inventors: Stephane DALLAIRE, Benjamin P. SMITH, Travis William LOVITT, Arash FARHOODFAR