Patents by Inventor Benjamin Riordon

Benjamin Riordon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11953097
    Abstract: Described are isolation valves, and chamber systems incorporating and methods of using the isolation valves. In some embodiments, an isolation valve may include a valve body and a flapper assembly. The valve body may define a first fluid volume, a second fluid volume, and a seating surface. The flapper assembly may include a flapper disposed inside the valve body having a flapper surface complimentary to the seating surface. The flapper may be pivotable within the valve body to a first position such that the flapper surface may be away from the seating surface to allow fluid flow between the first fluid volume and the second fluid volume. The flapper may be pivotable within the valve body to a second position such that the flapper surface may be proximate the seating surface to form a non-contact seal to restrict fluid flow between the first fluid volume and the second fluid volume.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: April 9, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Benjamin Riordon, Anantha K. Subramani, Charles T. Carlson
  • Patent number: 11608558
    Abstract: Embodiments of the present disclosure relate to forming multi-depth films for the fabrication of optical devices. One embodiment includes disposing a base layer of a device material on a surface of a substrate. One or more mandrels of the device material are disposed on the base layer. The disposing the one or more mandrels includes positioning a mask over of the base layer. The device material is deposited with the mask positioned over the base layer to form an optical device having the base layer with a base layer depth and the one or more mandrels having a first mandrel depth and a second mandrel depth.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: March 21, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Karl J. Armstrong, Ludovic Godet, Brian Alexander Cohen, Wayne McMillan, James D. Strassner, Benjamin Riordon
  • Publication number: 20230005783
    Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region fluidly coupled with a plurality of processing regions. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a plurality of substrate supports disposed within the transfer region. The systems may also include a transfer apparatus having a central hub including a first shaft and a second shaft counter-rotatable with the first shaft. The transfer apparatus may include an eccentric hub extending at least partially through the central hub, and which is radially offset from a central axis of the central hub. The transfer apparatus may also include an end effector coupled with the eccentric hub. The end effector may include a plurality of arms having a number of arms equal to the number of substrate supports of the plurality of substrate supports.
    Type: Application
    Filed: September 8, 2022
    Publication date: January 5, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Jason M. Schaller, Luke Bonecutter, Charles T. Carlson, Rajkumar Thanu, Karuppasamy Muthukamatchi, Jeff Hudgens, Benjamin Riordon
  • Patent number: 11443973
    Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region fluidly coupled with a plurality of processing regions. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a plurality of substrate supports disposed within the transfer region. The systems may also include a transfer apparatus having a central hub including a first shaft and a second shaft counter-rotatable with the first shaft. The transfer apparatus may include an eccentric hub extending at least partially through the central hub, and which is radially offset from a central axis of the central hub. The transfer apparatus may also include an end effector coupled with the eccentric hub. The end effector may include a plurality of arms having a number of arms equal to the number of substrate supports of the plurality of substrate supports.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: September 13, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Jason M. Schaller, Luke Bonecutter, Charles T. Carlson, Rajkumar Thanu, Karuppasamy Muthukamatchi, Jeff Hudgens, Benjamin Riordon
  • Patent number: 11355367
    Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region, and including substrate supports and a transfer apparatus. The transfer apparatus may include a central hub having a housing, and including a first shaft and a second shaft. The housing may be coupled with the second shaft, and may define an internal housing volume. The transfer apparatus may include a plurality of arms equal to a number of substrate supports of the plurality of substrate supports. Each arm of the plurality of arms may be coupled about an exterior of the housing. The transfer apparatus may include a plurality of arm hubs disposed within the internal housing volume. Each arm hub of the plurality of arm hubs may be coupled with an arm of the plurality of arms through the housing. The arm hubs may be coupled with the first shaft of the central hub.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: June 7, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Jason M. Schaller, Charles T. Carlson, Luke Bonecutter, David Blahnik, Karuppasamy Muthukamatchi, Jeff Hudgens, Benjamin Riordon
  • Publication number: 20210033197
    Abstract: Described are isolation valves, and chamber systems incorporating and methods of using the isolation valves. In some embodiments, an isolation valve may include a valve body and a flapper assembly. The valve body may define a first fluid volume, a second fluid volume, and a seating surface. The flapper assembly may include a flapper disposed inside the valve body having a flapper surface complimentary to the seating surface. The flapper may be pivotable within the valve body to a first position such that the flapper surface may be away from the seating surface to allow fluid flow between the first fluid volume and the second fluid volume. The flapper may be pivotable within the valve body to a second position such that the flapper surface may be proximate the seating surface to form a non-contact seal to restrict fluid flow between the first fluid volume and the second fluid volume.
    Type: Application
    Filed: July 22, 2020
    Publication date: February 4, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Benjamin Riordon, Anatha K. Subramani, Charles T. Carlson
  • Publication number: 20210013084
    Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region fluidly coupled with a plurality of processing regions. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a plurality of substrate supports disposed within the transfer region. The systems may also include a transfer apparatus having a central hub including a first shaft and a second shaft counter-rotatable with the first shaft. The transfer apparatus may include an eccentric hub extending at least partially through the central hub, and which is radially offset from a central axis of the central hub. The transfer apparatus may also include an end effector coupled with the eccentric hub. The end effector may include a plurality of arms having a number of arms equal to the number of substrate supports of the plurality of substrate supports.
    Type: Application
    Filed: July 7, 2020
    Publication date: January 14, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Jason M. Schaller, Luke Bonecutter, Charles T. Carlson, Rajkumar Thanu, Karuppasamy Muthukamatchi, Jeff Hudgens, Benjamin Riordon
  • Publication number: 20210013068
    Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region, and including substrate supports and a transfer apparatus. The transfer apparatus may include a central hub having a housing, and including a first shaft and a second shaft. The housing may be coupled with the second shaft, and may define an internal housing volume. The transfer apparatus may include a plurality of arms equal to a number of substrate supports of the plurality of substrate supports. Each arm of the plurality of arms may be coupled about an exterior of the housing. The transfer apparatus may include a plurality of arm hubs disposed within the internal housing volume. Each arm hub of the plurality of arm hubs may be coupled with an arm of the plurality of arms through the housing. The arm hubs may be coupled with the first shaft of the central hub.
    Type: Application
    Filed: July 7, 2020
    Publication date: January 14, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Jason M. Schaller, Charles T. Carlson, Luke Bonecutter, David Blahnik, Karuppasamy Muthukamatchi, Jeff Hudgens, Benjamin Riordon
  • Publication number: 20200325576
    Abstract: Embodiments of the present disclosure relate to forming multi-depth films for the fabrication of optical devices. One embodiment includes disposing a base layer of a device material on a surface of a substrate. One or more mandrels of the device material are disposed on the base layer. The disposing the one or more mandrels includes positioning a mask over of the base layer. The device material is deposited with the mask positioned over the base layer to form an optical device having the base layer with a base layer depth and the one or more mandrels having a first mandrel depth and a second mandrel depth.
    Type: Application
    Filed: April 8, 2020
    Publication date: October 15, 2020
    Inventors: Karl J. ARMSTRONG, Ludovic GODET, Brian Alexander COHEN, Wayne MCMILLAN, James D. STRASSNER, Benjamin RIORDON
  • Patent number: 9696097
    Abstract: Embodiments of multi-substrate thermal management apparatus are provided herein. In some embodiments, a multi-substrate thermal management apparatus includes a plurality of plates vertically arranged above one another; a plurality of channels extending through each of the plurality of plates; a supply manifold including a supply channel coupled to the plurality of plates at first locations; and a return manifold including a return channel coupled to the plurality of plates via a plurality of legs at second locations, wherein the supply and return channels are fluidly coupled to the plurality of channels to flow a heat transfer fluid through the plurality of plates.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: July 4, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kallol Bera, Kim Vellore, Andrew Constant, Jacob Newman, Jeffrey Blahnik, Jason Schaller, William Weaver, Robert Vopat, Benjamin Riordon
  • Publication number: 20160033205
    Abstract: Embodiments of multi-substrate thermal management apparatus are provided herein. In some embodiments, a multi-substrate thermal management apparatus includes a plurality of plates vertically arranged above one another; a plurality of channels extending through each of the plurality of plates; a supply manifold including a supply channel coupled to the plurality of plates at first locations; and a return manifold including a return channel coupled to the plurality of plates via a plurality of legs at second locations, wherein the supply and return channels are fluidly coupled to the plurality of channels to flow a heat transfer fluid through the plurality of plates.
    Type: Application
    Filed: October 1, 2014
    Publication date: February 4, 2016
    Inventors: KALLOL BERA, KIM VELLORE, ANDREW CONSTANT, JACOB NEWMAN, JEFFREY BLAHNIK, JASON SCHALLER, WILLIAM WEAVER, ROBERT VOPAT, BENJAMIN RIORDON
  • Patent number: 9190548
    Abstract: An improved method of fabricating an interdigitated back contact (IBC) solar cell is disclosed. A first mask is used to perform a patterned ion implantation of n-type dopant to create the back surface field. A second mask is then used to create the p-type emitter on the same surface. The second mask may be aligned to the n-type implant, and may be used in a plurality of orientations to create the desired p-type emitter. In some embodiments, a p-type blanket implant is performed as well. In some embodiments, a doping gradient is created.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: November 17, 2015
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: John Graff, Nicholas Bateman, Joseph Olson, Benjamin Riordon
  • Patent number: 8765583
    Abstract: An improved method of tilting a mask to perform a pattern implant of a substrate is disclosed. The mask has a plurality of apertures, and is placed between the ion source and the substrate. The mask and substrate are tilted at a first angle relative to the incoming ion beam. After the substrate is exposed to the ion beam, the mask and substrate are tilted at a second angle relative to the ion beam and a subsequent implant step is performed. Through the selection of the aperture size and shape, the cross-section of the mask, the distance between the mask and the substrate and the number of implant steps, a variety of implant patterns may be created. In some embodiments, the implant pattern includes heavily doped horizontal stripes with lighter doped regions between the stripes. In some embodiments, the implant pattern includes a grid of heavily doped regions.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: July 1, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Benjamin Riordon, Nicholas Bateman, Atul Gupta
  • Patent number: 8768040
    Abstract: A method of identifying individual silicon substrates, and particularly solar cells, is disclosed. Every solar cell possesses a unique set of optical properties. The method identifies these properties and stores them in a database, where they can be associated to a particular solar cell. Unlike conventional tracking techniques, the present method requires no dedicated space on the surface of the silicon substrate. This method allows substrates to be tracked through the manufacturing process, as well as throughout the life of the substrate.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: July 1, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Benjamin Riordon, Russell J. Low
  • Publication number: 20130087189
    Abstract: An improved method of fabricating an interdigitated back contact (IBC) solar cell is disclosed. A first mask is used to perform a patterned ion implantation of n-type dopant to create the back surface field. A second mask is then used to create the p-type emitter on the same surface. The second mask may be aligned to the n-type implant, and may be used in a plurality of orientations to create the desired p-type emitter. In some embodiments, a p-type blanket implant is performed as well. In some embodiments, a doping gradient is created.
    Type: Application
    Filed: October 11, 2011
    Publication date: April 11, 2013
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: John Graff, Nicholas Bateman, Joseph Olson, Benjamin Riordon
  • Patent number: 8377739
    Abstract: An improved, lower cost method of processing substrates, such as to create solar cells, is disclosed. The doped regions are created on the substrate, using a mask or without the use of lithography or masks. After the implantation is complete, visual recognition is used to determine the exact region that was implanted. This information can then be used by subsequent process steps to crate a suitable metallization layer and provide alignment information. These techniques can also be used in other ion implanter applications. In another aspect, a dot pattern selective emitter is created and imaging is used to determine the appropriate metallization layer.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: February 19, 2013
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventor: Benjamin Riordon
  • Patent number: 8378318
    Abstract: A mask or set of masks is disclosed in which outward projections are placed on either side of at least one aperture. An ion beam is then directed through the mask toward a workpiece. An ion collecting device or an optical system is then used to measure the alignment of the mask to the ion beam. These projections serve to increase the sensitivity of the system to misalignment. In another embodiment, a blocker is used to create a region of the workpiece that is not subjected to a blanket implant. This facilitates the use of optical means to insure and determine alignment of the mask to the ion beam.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: February 19, 2013
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: George Gammel, Benjamin Riordon
  • Publication number: 20120244692
    Abstract: An improved, lower cost method of processing substrates, such as to create solar cells is disclosed. In addition, a modified substrate carrier is disclosed. The carriers typically used to carry the substrates are modified so as to serve as shadow masks for a patterned implant. In some embodiments, various patterns can be created using the carriers such that different process steps can be performed on the substrate by changing the carrier or the position with the carrier. In addition, since the alignment of the substrate to the carrier is critical, the carrier may contain alignment features to insure that the substrate is positioned properly on the carrier. In some embodiments, gravity is used to hold the substrate on the carrier, and therefore, the ions are directed so that the ion beam travels upward toward the bottom side of the carrier.
    Type: Application
    Filed: June 5, 2012
    Publication date: September 27, 2012
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Nicholas Bateman, Kevin Daniels, Atul Gupta, Russell Low, Benjamin Riordon, Robert Mitchell, Steven Anella
  • Publication number: 20120214273
    Abstract: An improved method of tilting a mask to perform a pattern implant of a substrate is disclosed. The mask has a plurality of apertures, and is placed between the ion source and the substrate. The mask and substrate are tilted at a first angle relative to the incoming ion beam. After the substrate is exposed to the ion beam, the mask and substrate are tilted at a second angle relative to the ion beam and a subsequent implant step is performed. Through the selection of the aperture size and shape, the cross-section of the mask, the distance between the mask and the substrate and the number of implant steps, a variety of implant patterns may be created. In some embodiments, the implant pattern includes heavily doped horizontal stripes with lighter doped regions between the stripes. In some embodiments, the implant pattern includes a grid of heavily doped regions.
    Type: Application
    Filed: February 17, 2011
    Publication date: August 23, 2012
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Benjamin Riordon, Nicholas Bateman, Atul Gupta
  • Patent number: D938373
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: December 14, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Jason M. Schaller, Benjamin Riordon, Mitchell DiSanto, Paul Forderhase, Gary Wyka, Jeffrey Hudgens, Paul Z. Wirth, Charles T. Carlson, Siva Chandrasekar, Michael Carrell, Venkata Raghavaiah Chowdhary Kode, Dmitry A. Dzilno, Juan Carlos Rocha-Alvarez