Patents by Inventor Bernard A. Hausen

Bernard A. Hausen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6805708
    Abstract: Anastomotic stents for connecting a graft vessel to a target vessel, and methods of use thereof. The anastomotic stents of the invention are suitable for use in a variety of anastomosis procedures, including coronary artery bypass grafting. One embodiment of the invention comprises a large vessel anastomotic stent for use with large diameter target vessels such as the aorta or its major side branches. Another embodiment of the invention comprises a small vessel anastomotic stent for use on a target vessel which has a small diameter such as a coronary artery. Another aspect of the invention involves applicators for use with the stents of the invention.
    Type: Grant
    Filed: July 16, 2002
    Date of Patent: October 19, 2004
    Assignee: Cardica, Inc.
    Inventors: Stephen A. Yencho, Bernard A. Hausen
  • Patent number: 6786914
    Abstract: An anastomosis device is a one piece device for connecting a graft vessel to a target vessel without the use of conventional sutures. The anastomosis device includes an expandable tube configured to have a graft vessel secured to the tube. The device has an expandable linkage positioned at one end of the device and expansion of this linkage causes a first radially extending flange to fold outward. This first flange abuts an interior wall of a target vessel and a second flange is formed which abuts an exterior wall of the target vessel trapping the target vessel between the two flanges and secures the end of the graft vessel into an opening in the wall of the target vessel. The device greatly increases the speed with which anastomosis can be performed over known suturing methods and allows anastomosis to be performed in tight spaces.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: September 7, 2004
    Assignee: Cardica, Inc.
    Inventors: Jaime Vargas, Stephen A. Yencho, Jamey Nielsen, Michael Hendricksen, Bernard A. Hausen
  • Publication number: 20040102795
    Abstract: Anastomotic stents for connecting a graft vessel to a target vessel, and methods of use thereof. The anastomotic stents of the invention are suitable for use in a variety of anastomosis procedures, including coronary artery bypass grafting. One embodiment of the invention comprises a large vessel anastomotic stent for use with large diameter target vessels such as the aorta or its major side branches. Another embodiment of the invention comprises a small vessel anastomotic stent for use on a target vessel which has a small diameter such as a coronary artery. Another aspect of the invention involves applicators for use with the stents of the invention.
    Type: Application
    Filed: November 14, 2003
    Publication date: May 27, 2004
    Applicant: Cardica, Inc.
    Inventors: Stephen A. Yencho, Bernard A. Hausen
  • Publication number: 20040097835
    Abstract: A single measurement tool is configured to measure at least one characteristic of a tubular tissue structure during a surgical procedure. The measurement tool may include an indentation defined therein that is placed against a tubular structure such as the aorta to determine whether that tubular structure has a radius larger than or smaller than the radius of curvature of the indentation. The measurement tool may include a number of first recesses for measuring the diameter of a tubular structure. The measurement tool may include at least one second recess for measuring the wall thickness of a tubular structure.
    Type: Application
    Filed: October 3, 2003
    Publication date: May 20, 2004
    Applicant: Cardica, Inc.
    Inventors: Jose R. Carranza, Scott O. Chamness, Theodore M. Bender, Bernard A. Hausen
  • Publication number: 20040098011
    Abstract: A tissue punch for creating a hole in the wall of a target blood vessel for receiving an anastomosis device includes a piercing element for penetrating the tissue and a cutting element for cutting a plug of tissue around the pierced hole. The tissue punch includes a trocar for inserting the piercing element. After punching is complete, the piercing element is removed from the trocar through a side wall of the trocar so that a medical device can be deployed through the trocar lumen. The tissue punch may also include a tissue trap for trapping the plug of tissue.
    Type: Application
    Filed: October 31, 2003
    Publication date: May 20, 2004
    Applicant: Cardica, Inc.
    Inventors: Jaime Vargas, Brendan M. Donohoe, Scott C. Anderson, Theodore Bender, Stephen Yencho, Bernard Hausen, Michael Hendricksen, James T. Nielsen
  • Publication number: 20040097991
    Abstract: An anastomosis device is a one piece device for connecting a graft vessel to a target vessel without the use of conventional sutures. The anastomosis device includes an expandable tube configured to have a graft vessel secured to the tube. The device has an expandable linkage positioned at one end of the device and expansion of this linkage causes a first radially extending flange to fold outward. This first flange abuts an interior wall of a target vessel and a second flange is formed which abuts an exterior wall of the target vessel trapping the target vessel between the two flanges and secures the end of the graft vessel into an opening in the wall of the target vessel. The device greatly increases the speed with which anastomosis can be performed over known suturing methods and allows anastomosis to be performed in tight spaces.
    Type: Application
    Filed: September 18, 2003
    Publication date: May 20, 2004
    Applicant: Cardica, Inc.
    Inventors: Jaime Vargas, Stephen A. Yencho, Jamey Nielsen, Michael Hendrickson, Bernard A. Hausen
  • Publication number: 20040092977
    Abstract: An anastomosis device is a one piece device for connecting a graft vessel to a target vessel without the use of conventional sutures. The anastomosis device includes an expandable tube configured to have a graft vessel secured to the tube. The device has an expandable linkage positioned at one end of the device and expansion of this linkage causes a first radially extending flange to fold outward. This first flange abuts an interior wall of a target vessel and a second flange is formed which abuts an exterior wall of the target vessel trapping the target vessel between the two flanges and secures the end of the graft vessel into an opening in the wall of the target vessel. The device greatly increases the speed with which anastomosis can be performed over known suturing methods and allows anastomosis to be performed in tight spaces.
    Type: Application
    Filed: June 26, 2003
    Publication date: May 13, 2004
    Applicant: Cardica, Inc.
    Inventors: Jaime Vargas, Stephen A. Yencho, Jamey Nielsen, Michael Hendricksen, Bernard A. Hausen
  • Publication number: 20040073248
    Abstract: A tissue punch for creating a hole in the wall of a target blood vessel for receiving an anastomosis device includes a piercing element for penetrating the tissue and a cutting element for cutting a plug of tissue around the pierced hole. The tissue punch includes a trocar for inserting the piercing element. After punching is complete, the piercing element is removed from the trocar through a side wall of the trocar so that a medical device can be deployed through the trocar lumen. The tissue punch may also include a tissue trap for trapping the plug of tissue.
    Type: Application
    Filed: October 31, 2003
    Publication date: April 15, 2004
    Applicant: Cardica, Inc.
    Inventors: Jaime Vargas, Brendan M. Donohoe, Scott C. Anderson, Theodore Bender, Stephen Yencho, Bernard Hausen, Michael Hendricksen, James T. Nielsen
  • Publication number: 20040015180
    Abstract: Anastomotic stents for connecting a graft vessel to a target vessel, and methods of use thereof. The anastomotic stents of the invention are suitable for use in a variety of anastomosis procedures, including coronary artery bypass grafting. One embodiment of the invention comprises a large vessel anastomotic stent for use with large diameter target vessels such as the aorta or its major side branches. Another embodiment of the invention comprises a small vessel anastomotic stent for use on a target vessel which has a small diameter such as a coronary artery. Another aspect of the invention involves applicators for use with the stents of the invention.
    Type: Application
    Filed: April 11, 2003
    Publication date: January 22, 2004
    Applicant: Cardica, Inc.
    Inventors: Stephen A. Yencho, Bernard A. Hausen
  • Patent number: 6673088
    Abstract: A tissue punch for creating a hole in the wall of a target blood vessel for receiving an anastomosis device includes a piercing element for penetrating the tissue and a cutting element for cutting a plug of tissue around the pierced hole. The tissue punch includes a trocar for inserting the piercing element. After punching is complete, the piercing element is removed from the trocar through a side wall of the trocar so that a medical device can be deployed through the trocar lumen. The tissue punch may also include a tissue trap for trapping the plug of tissue.
    Type: Grant
    Filed: April 4, 2000
    Date of Patent: January 6, 2004
    Assignee: Cardica, Inc.
    Inventors: Jaime Vargas, Brendan M. Donohoe, Scott C. Anderson, Theodore Bender, Stephen Yencho, Bernard Hausen, Michael Hendricksen, James T. Nielsen
  • Patent number: 6666832
    Abstract: A single measurement tool is configured to measure at least two characteristics of a patient's vasculature during a surgical procedure such as a coronary artery bypass graft procedure. The measurement tool includes an indentation defined therein that is placed against a tubular structure such as the aorta to determine whether that tubular structure has a radius larger than or smaller than the radius of curvature of the indentation. The measurement tool may include a number of first recesses for measuring the diameter of a tubular structure. The measurement tool may include at least one second recess for measuring the wall thickness of a tubular structure.
    Type: Grant
    Filed: January 7, 2002
    Date of Patent: December 23, 2003
    Assignee: Cardica, Inc.
    Inventors: Jose R. Carranza, Scott O. Chamness, Theodore M. Bender, Bernard A. Hausen
  • Patent number: 6652541
    Abstract: An anastomosis device is a one piece device for connecting a graft vessel to a target vessel without the use of conventional sutures. The anastomosis device includes an expandable tube configured to have a graft vessel secured to the tube. The device has an expandable linkage positioned at one end of the device and expansion of this linkage causes a first radially extending flange to fold outward. This first flange abuts an interior wall of a target vessel and a second flange is formed which abuts an exterior wall of the target vessel trapping the target vessel between the two flanges and secures the end of the graft vessel into an opening in the wall of the target vessel. The device greatly increases the speed with which anastomosis can be performed over known suturing methods and allows anastomosis to be performed in tight spaces.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: November 25, 2003
    Assignee: Cardica, Inc
    Inventors: Jaime Vargas, Stephen A. Yencho, Jamey Nielsen, Michael Hendricksen, Bernard A. Hausen
  • Publication number: 20030161827
    Abstract: The invention provides methods for downmodulating the immune response in a subject undergoing transplantation comprising administering to the subject at least one antibody that recognizes a B7 antigen according to specific treatment protocols.
    Type: Application
    Filed: September 5, 2002
    Publication date: August 28, 2003
    Inventors: Abbie Cheryl Celnicker, Gary S. Gray, Stuart Friedrich, Allan Kirk, Garvin Warner, Bernard Hausen, Randall E. Morris
  • Publication number: 20030120293
    Abstract: The anastomosis device according to the present invention is a one piece device for connecting a graft vessel to a target vessel without the use of conventional sutures. The anastomosis device includes a frame for receiving and holding the end of a graft vessel in an everted position and first and second spreading members configured to be inserted into an opening in the target vessel. The first and second spreading members are arranged substantially in a plane for insertion into an opening in a target vessel, and are moved away from one another to capture the edges of the opening in the target vessel securing the graft vessel to the target vessel. One version of the anastomosis device includes a plurality of linkages arranged in two rows for grasping opposite sides of an opening in the target vessel. A portion of the linkages fold outward to trap vessel walls on opposite sides of the opening in the target vessel.
    Type: Application
    Filed: December 30, 2002
    Publication date: June 26, 2003
    Applicant: Cardica, Inc.
    Inventors: Stephen A. Yencho, Michael Hendricksen, Jaime Vargas, Jamey Nielsen, Bernard A. Hausen, Scott Vance
  • Publication number: 20030109893
    Abstract: A medical device which can be implanted at a target site in a living body. The device includes an inner flange formed by radial expansion of the device and an outer flange formed by axial compression of the device. The device can include an implant portion and a discard portion which separate from each other during formation of the outer flange. The separation can occur by fracturing a frangible linkage or by mechanically separating a portion of the outer flange from a deployment tool. The device can be a one piece anastomosis device for connecting a graft vessel to a target vessel without the use of conventional sutures. The inner and outer flanges capture the edges of an opening in a target vessel and secure the graft vessel to the opening in the target vessel. The device greatly increases the speed with which anastomosis can be performed over known suturing methods.
    Type: Application
    Filed: October 18, 2002
    Publication date: June 12, 2003
    Applicant: Cardica,Inc.
    Inventors: Jaime Vargas, James T. Nielsen, Michael Hendricksen, Brendan M. Donohoe, Stephen Yencho, Bernard Hausen
  • Publication number: 20030065343
    Abstract: An access port system of the present invention provides a passageway through which instruments are inserted into a target vessel during performance of an anastomosis procedure. The access port system is secured to an exterior surface of the target vessel and assists in axial alignment, depth registration, and sealing when inserting instruments into the target vessel. The access port system provides the capability of placing punching instruments, anastomosis instruments, and other instruments in their correct positions relative to a target vessel and providing hemostasis while inserting instruments into and removing instruments from the target vessel.
    Type: Application
    Filed: September 28, 2001
    Publication date: April 3, 2003
    Inventors: Stephen A. Yencho, Bernard A. Hausen, Jaime S. Vargas
  • Patent number: 6537288
    Abstract: A medical device which can be implanted at a target site in a living body. The device includes an inner flange formed by radial expansion of the device and an outer flange formed by axial compression of the device. The device can include an implant portion and a discard portion which separate from each other during formation of the outer flange. The separation can occur by fracturing a frangible linkage or by mechanically separating a portion of the outer flange from a deployment tool. The device can be a one piece anastomosis device for connecting a graft vessel to a target vessel without the use of conventional sutures. The inner and outer flanges capture the edges of an opening in a target vessel and secure the graft vessel to the opening in the target vessel. The device greatly increases the speed with which anastomosis can be performed over known suturing methods.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: March 25, 2003
    Assignee: Cardica, Inc.
    Inventors: Jaime Vargas, James T. Nielsen, Michael Hendricksen, Brendan M. Donohoe, Stephen Yencho, Bernard Hausen
  • Patent number: 6537287
    Abstract: The anastomosis device according to the present invention is a one piece device for connecting a graft vessel to a target vessel without the use of conventional sutures. The anastomosis device includes a frame for receiving and holding the end of a graft vessel in an everted position and first and second spreading members configured to be inserted into an opening in the target vessel. The first and second spreading members are arranged substantially in a plane for insertion into an opening in a target vessel, and are moved away from one another to capture the edges of the opening in the target vessel securing the graft vessel to the target vessel. One version of the anastomosis device includes a plurality of linkages arranged in two rows for grasping opposite sides of an opening in the target vessel. A portion of the linkages fold outward to trap vessel walls on opposite sides of the opening in the target vessel.
    Type: Grant
    Filed: November 6, 2000
    Date of Patent: March 25, 2003
    Assignee: Cardica, Inc.
    Inventors: Stephen A. Yencho, Michael Hendricksen, Jaime Vargas, Jamey Nielsen, Bernard A. Hausen, Scott Vance
  • Publication number: 20030028205
    Abstract: An anastomosis system and method uses an anvil to control and support a tissue site during an anastomosis procedure. The anvil is particularly useful for supporting a wall of a coronary artery during attachment of a graft vessel to the coronary artery because the wall of the coronary artery is very thin, difficult to grasp, and susceptible to tearing. In one method, the anvil is inserted into a pressurized or unpressurized target vessel and is pulled against an inner wall of the target vessel causing tenting of the thin tissue of the vessel wall. A graft vessel is then advanced to the anastomosis site and an end of the graft vessel is positioned adjacent and exterior of the target vessel. Staples are inserted through the tissue of the graft vessel and the target vessel by pivoting the arms of a staple holder towards the anvil. When the ends of the staples engage staple bending features on the anvil, the ends of the staples bend over securing the graft vessel and target vessel together.
    Type: Application
    Filed: September 24, 2002
    Publication date: February 6, 2003
    Applicant: Cardica, Inc.
    Inventors: Jaime Vargas, Michael Hendricksen, Stephen A. Yencho, Jamey Nielsen, Bernard A. Hausen, Brendan Donohoe
  • Publication number: 20030023253
    Abstract: An anastomosis system and method uses an anvil to control and support a tissue site during an anastomosis procedure. The anvil is particularly useful for supporting a wall of a coronary artery during attachment of a graft vessel to the coronary artery because the wall of the coronary artery is very thin, difficult to grasp, and susceptible to tearing. In one method, the anvil is inserted into a pressurized or unpressurized target vessel and is pulled against an inner wall of the target vessel causing tenting of the thin tissue of the vessel wall. A graft vessel is then advanced to the anastomosis site and an end of the graft vessel is positioned adjacent and exterior of the target vessel. Staples are inserted through the tissue of the graft vessel and the target vessel by pivoting the arms of a staple holder towards the anvil. When the ends of the staples engage staple bending features on the anvil, the ends of the staples bend over securing the graft vessel and target vessel together.
    Type: Application
    Filed: September 24, 2002
    Publication date: January 30, 2003
    Applicant: Cardica, Inc.
    Inventors: Jaime Vargas, Michael Hendricksen, Stephen A. Yencho, Jamey Nielsen, Bernard A. Hausen, Brendan Donohoe