Patents by Inventor Bernard Patrick Bewlay

Bernard Patrick Bewlay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11692871
    Abstract: An imaging device includes a plurality of electronic components, a phase change material, and a heat transfer structure. The plurality of electronic components is configured to collect data and have a predetermined temperature parameter. The plurality of electronic components is disposed within the phase change material. The phase change material has a first material phase and a second material phase. The phase change material has a first material phase and a second material phase. The phase change material is configured to absorb heat through changing from the first material phase to the second material phase. The heat transfer structure is disposed within the phase change material. The heat transfer structure is configured to conduct heat within the phase change material. The phase change material and the heat transfer structure are further configured to regulate a temperature of the electronic components below the predetermined temperature parameter.
    Type: Grant
    Filed: November 19, 2021
    Date of Patent: July 4, 2023
    Assignee: General Electric Company
    Inventors: Guanghua Wang, Naveenan Thiagarajan, Todd Garrett Wetzel, Jason Edward Dees, Bernard Patrick Bewlay
  • Patent number: 11679898
    Abstract: A method for inspecting and repairing a surface of a component of a gas turbine engine, the method including: inserting an inspection and repair tool into an interior of the gas turbine engine; inspecting the surface of the component with the inspection and repair tool; performing a repair of the surface of the component with the inspection and repair tool from within the interior of the gas turbine engine, the inspection and repair tool remaining within the interior of the gas turbine engine between inspecting the component and performing the repair of the surface of the component.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: June 20, 2023
    Assignees: General Electric Company, Oliver Crispin Robotics Limited
    Inventors: Todd William Danko, Ambarish Jayant Kulkarni, Margeaux Wallace, Hrishikesh Keshavan, Bernard Patrick Bewlay, Byron Andrew Pritchard, Jr., Michael Dean Fullington, Andrew Crispin Graham, Trevor Owen Hawke, Julian Matthew Foxall, Ahmed M ELKady
  • Patent number: 11655720
    Abstract: A sprayable thermal barrier coating powder mixture for a gas turbine engine includes: a dry composition having a low surface area ceramic powder having a median particle size distribution greater than 5 microns and less than 50 microns, and a high surface area ceramic powder having a median particle size distribution smaller than 5 microns, wherein the low surface area ceramic powder makes up at least 50% by weight of the dry composition of the sprayable thermal barrier coating powder mixture.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: May 23, 2023
    Assignee: General Electric Company
    Inventors: Hrishikesh Keshavan, Atanu Saha, Margeaux Wallace, Mamatha Nagesh, Ambarish Jayant Kulkarni, Bernard Patrick Bewlay, Jr.
  • Patent number: 11649735
    Abstract: A method of cleaning a component within a turbine that includes disassembling the turbine engine to provide a flow path to an interior passageway of the component from an access point. The component has coked hydrocarbons formed thereon. The method further includes discharging a flow of cleaning solution towards the interior passageway from the access point, wherein the cleaning solution is configured to remove the coked hydrocarbons from the component.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: May 16, 2023
    Assignee: General Electric Company
    Inventors: Michael Robert Millhaem, Nicole Jessica Tibbetts, Byron Andrew Pritchard, Jr., Bernard Patrick Bewlay, Keith Anthony Lauria, Ambarish Jayant Kulkarni, Mark Rosenzweig, Martin Matthew Morra, Timothy Mark Sambor, Andrew Jenkins
  • Patent number: 11624288
    Abstract: A coated component including a slotted ceramic coating with a reactive phase coating disposed thereon for improved resistance to environmental contaminant compositions, along with methods of its formation, is provided. The coated component may include a substrate defining a surface, a ceramic coating disposed on the surface of the substrate, and a reactive phase coating disposed on the layer of environmental contaminant compositions. The ceramic coating includes a plurality of slots disposed in the ceramic coating forming segments of ceramic coating material.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: April 11, 2023
    Assignee: General Electric Company
    Inventors: Hrishikesh Keshavan, Byron Andrew Pritchard, Cathleen Ann Hoel, Ambarish Jayant Kulkarni, Michael Solomon Idelchik, Bernard Patrick Bewlay
  • Patent number: 11603593
    Abstract: Systems and methods for automatic detection of defects in a coating of a component are provided. In one aspect, a coating inspection system is provided. The coating inspection system includes a heating element operable to impart heat to the component as it traverses relative thereto. An imaging device of the system captures images of the component as the heating element traverses relative to the component and applies heat thereto. The images indicate the transient thermal response of the component. The system can generate a single observation image using the captured images. The system can detect and analyze defects using the generated single observation image.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: March 14, 2023
    Assignee: General Electric Company
    Inventors: Venkata Vijayaraghava Nalladega, Bernard Patrick Bewlay, Majid Nayeri, Michael Howard Rucker
  • Patent number: 11591928
    Abstract: Embodiments in accordance with the present disclosure include a meta-stable detergent based foam generating device of a turbine cleaning system includes a manifold configured to receive a liquid detergent and an expansion gas, a gas supply source configured to store the expansion gas, and one or more aerators fluidly coupled with, and between, the gas supply source and the manifold. Each aerator of the one or more aerators comprises an orifice through which the expansion gas enters the manifold, and wherein the orifice of each aerator is sized to enable generation of a meta-stable detergent based foam having bubbles with bubble diameters within a range of 10 microns (3.9×10?4 inches inches) and 5 millimeters (0.2 inches), having a half-life within a range of 5 minutes and 180 minutes, or a combination thereof.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: February 28, 2023
    Assignee: General Electric Company
    Inventors: Ambarish Jayant Kulkarni, Bernard Patrick Bewlay, Byron Andrew Pritchard, Jr., Nicole Jessica Tibbetts, Michael Edward Eriksen, Stephen Wilton
  • Patent number: 11578613
    Abstract: System for selectively contacting a cleaning composition with a surface of a turbine engine component is presented. The system includes a cleaning apparatus and a manifold assembly. The cleaning apparatus includes an upper portion and a lower portion defining a cleaning chamber configured to allow selective contact between the cleaning composition and a surface of the first portion of the turbine engine component. The upper portion includes a plurality of fill holes in fluid communication with the cleaning chamber, and the lower portion includes a plurality of drain holes in fluid communication with the cleaning chamber. The manifold assembly is configured to selectively circulate the cleaning composition from a reservoir to the cleaning chamber via the plurality of fill holes, and recirculate the cleaning composition from the cleaning chamber to the reservoir via the plurality of drain holes. Methods for selectively cleaning a turbine engine component is also presented.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: February 14, 2023
    Assignee: General Electric Company
    Inventors: Nicole Jessica Tibbetts, Andrew James Jenkins, Bernard Patrick Bewlay, Evan Jarrett Dolley, John Watt, Christopher Perrett, Vincent Gerard Lauria
  • Publication number: 20230045780
    Abstract: An article for high temperature service is presented. The article includes a substrate and a thermal barrier coating disposed on the substrate. The thermal barrier coating includes a plurality of aluminum-based particles dispersed in an inorganic binder, wherein the aluminum-based particles are substantially spaced apart from each other via the inorganic binder such that the thermal barrier coating is substantially electrically and thermally insulating. Method of making the article is also presented.
    Type: Application
    Filed: September 21, 2021
    Publication date: February 9, 2023
    Inventors: Lawrence Bernard KOOL, Bernard Patrick BEWLAY
  • Patent number: 11555413
    Abstract: Systems and methods for treating a component of an installed and assembled gas turbine engine are provided. Accordingly, the method includes operably coupling a delivery assembly to an annular inlet of a core gas turbine engine. A portion of treating fluid is atomized with the delivery assembly to develop a treating mist having a plurality of atomized droplets. The atomized droplets are suspended within any path of the core gas turbine engine from the annular inlet to an axial position downstream of a compressor of the core gas turbine engine. A portion of the treating mist is impacted or precipitated onto the component so as to wet the component, and a portion of the deposits on the component is dissolved by the treating mist.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: January 17, 2023
    Assignees: General Electric Company, Oliver Crispin Robotics Limited
    Inventors: Byron Andrew Pritchard, Jr., Keith Anthony Lauria, Erica Elizabeth Sampson, Bernard Patrick Bewlay, Ambarish Jayant Kulkarni, Michael Robert Millhaem, William Francis Navojosky, Nicole Jessica Tibbetts, Gongguan Wang, Andrew Crispin Graham
  • Patent number: 11549382
    Abstract: A coated component of a gas turbine engine includes a substrate defining a surface, a thermal barrier coating deposited on the surface of the substrate, a region of the component where the thermal barrier coating has spalled from the substrate, a layer of environmental contaminant compositions formed on one or more of the thermal barrier coating or the region of the component where the thermal barrier coating has spalled from the substrate in response to an initial exposure of the component to high operating temperatures of the gas turbine engine, and a thermal barrier coating (TBC) restoration coating deposited at least on the region of the component where there thermal barrier coating has spalled from the substrate.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: January 10, 2023
    Assignee: General Electric Company
    Inventors: Hrishikesh Keshavan, Ambarish Jayant Kulkarni, Margeaux Wallace, Byron Andrew Pritchard, Jr., Almed M. Elkady, Atanu Saha, Mamatha Nagesh, Bernard Patrick Bewlay
  • Patent number: 11534780
    Abstract: An atomizing spray nozzle device includes an atomizing zone housing that receives different phases of materials used to form a coating. The atomizing zone housing mixes the different phases of the materials into a two-phase mixture of ceramic-liquid droplets in a carrier gas. The device also includes a plenum housing fluidly coupled with the atomizing housing and extending from the atomizing housing to a delivery end. The plenum housing includes an interior plenum that receives the two-phase mixture of ceramic-liquid droplets in the carrier gas from the atomizing zone housing. The device also includes one or more delivery nozzles fluidly coupled with the plenum chamber. The delivery nozzles provide outlets from which the two-phase mixture of ceramic-liquid droplets in the carrier gas is delivered onto one or more surfaces of a target object as the coating on the target object.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: December 27, 2022
    Assignee: General Electric Company
    Inventors: Ambarish Jayant Kulkarni, Hrishikesh Keshavan, Mehmet Dede, Bernard Patrick Bewlay, Guanghua Wang, Byron Pritchard, Michael Solomon Idelchik
  • Publication number: 20220389834
    Abstract: Systems and methods for treating a component of an installed and assembled gas turbine engine are provided. Accordingly, the method includes operably coupling a delivery assembly to an annular inlet of a core gas turbine engine. A portion of treating fluid is atomized with the delivery assembly to develop a treating mist having a plurality of atomized droplets. The atomized droplets are suspended within any path of the core gas turbine engine from the annular inlet to an axial position downstream of a compressor of the core gas turbine engine. A portion of the treating mist is impacted or precipitated onto the component so as to wet the component, and a portion of the deposits on the component is dissolved by the treating mist.
    Type: Application
    Filed: August 17, 2022
    Publication date: December 8, 2022
    Inventors: Byron Andrew Pritchard, JR., Keith Anthony Lauria, Erica Elizabeth Sampson, Bernard Patrick Bewlay, Ambarish Jayant Kulkarni, Michael Robert Millhaem, William Francis Navojosky, Nicole Jessica Tibbetts, Gongguan Wang, Andrew Crispin Graham
  • Patent number: 11507616
    Abstract: A method of inspecting a component includes storing at least one inspection image file in a memory and receiving a search request associated with the at least one inspection image file. The method also includes accessing a database including a plurality of image files, comparing the hash code of the at least one inspection image file to the hash code of each image file of the plurality of image files, and identifying a first subset of image files based on the hash code comparison. The method also includes comparing the feature data of the at least one inspection image file to the feature data of each image file of the first subset of image files and classifying a second subset of image files as relevant based on the feature data comparison. The method further includes generating search results based on the second subset of image files.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: November 22, 2022
    Assignee: General Electric Company
    Inventors: Shaopeng Liu, Xiao Bian, Yan Liu, Feng Xue, Walter Vincent Dixon, III, Mark Richard Gilder, Peihong Zhu, Bernard Patrick Bewlay, Byron Andrew Pritchard, Masako Yamada, Colin James Parris
  • Patent number: 11492913
    Abstract: An inspection system includes a thermographic sensor configured to capture thermographic data of a component having holes as a fluid is pulsed toward the holes, and one or more processors configured to temporally process the thermographic data to calculate temporal scores and spatial scores for the corresponding holes. The scores can be used to obtain a reference dataset and a test dataset. A performance score can be assigned to the component based on the difference between the datasets.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: November 8, 2022
    Assignee: General Electric Company
    Inventors: Guanghua Wang, Bryon Edward Knight, Andrew Lee Trimmer, Jason Edward Dees, Bernard Patrick Bewlay, Sean Robert Farrell
  • Patent number: 11474058
    Abstract: A detection system configured to detect water in a fan case includes a heater, a monitoring camera, and a computing device. The heater is configured to apply heat to the fan case. Any water within the fan case generates a local transient thermal gradient in response to the applied heat. The monitoring camera is positioned proximate the fan case and configured to acquire a plurality of images of the heated fan case. The computing device is configured to: receive the plurality of images from the monitoring camera and analyze the plurality of images to detect the water in the fan case.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: October 18, 2022
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Venkata Vijayaraghava Nalladega, Charles Joseph Geiger, Bernard Patrick Bewlay
  • Publication number: 20220298927
    Abstract: A machine is cleaned by directing a foam detergent into the machine to remove contaminants from inside the machine. An effluent portion of the foam detergent exits from the machine with some of the contaminants. One or more of a turbidity, a salinity, an amount of total dissolved solids, or a concentration the contaminants in the effluent is measured. A cleaning time period during which the foam detergent is to be directed into the machine is determined based on the turbidity, the salinity, the amount of total dissolved solids, and/or the contaminant concentration that is measured from the effluent. The foam detergent continues to be directed into the machine during the cleaning time period, and the flow of the foam detergent into the machine is terminated on expiration of the time period.
    Type: Application
    Filed: June 2, 2022
    Publication date: September 22, 2022
    Inventors: Nicole Jessica Tibbetts, Bernard Patrick Bewlay, Michael Eriksen, Keith Anthony Lauria, Richard Schliem, Erica Sampson, Eric Telfeyan
  • Patent number: 11435305
    Abstract: A system for detecting the presence of an anomaly within a component includes a motorized apparatus configured to move around the component. The system also includes an excitation device and a camera mounted to the motorized apparatus. The excitation device is configured to emit an excitation signal toward the component to cause the anomaly within the component to generate a detectable reactionary thermal signal in response to the excitation signal. The camera is configured to capture thermal images of the component. The thermal images include the detectable reactionary thermal signal and indicate the presence of the anomaly within the component. The system further includes a controller communicatively coupled to the excitation device and the camera. The controller is configured to receive and analyze the thermal images to detect the presence of the anomaly within the component.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: September 6, 2022
    Assignee: General Electric Company
    Inventors: Guanghua Wang, Huan Tan, Bernard Patrick Bewlay
  • Patent number: 11415019
    Abstract: Embodiments in accordance with the present disclosure include a meta-stable detergent based foam generating device of a turbine cleaning system includes a manifold configured to receive a liquid detergent and an expansion gas, a gas supply source configured to store the expansion gas, and one or more aerators fluidly coupled with, and between, the gas supply source and the manifold. Each aerator of the one or more aerators comprises an orifice through which the expansion gas enters the manifold, and wherein the orifice of each aerator is sized to enable generation of a meta-stable detergent based foam having bubbles with bubble diameters within a range of 10 microns (3.9×10?4 inches) and 5 millimeters (0.2 inches), having a half-life within a range of 5 minutes and 180 minutes, or a combination thereof.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: August 16, 2022
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Ambarish Jayant Kulkarni, Bernard Patrick Bewlay, Byron Andrew Pritchard, Jr., Nicole Jessica Tibbetts, Michael Edward Eriksen, Stephen Wilton
  • Publication number: 20220243614
    Abstract: System for selectively contacting a cleaning composition with a surface of a turbine engine component is presented. The system includes a cleaning apparatus and a manifold assembly. The cleaning apparatus includes an upper portion and a lower portion defining a cleaning chamber configured to allow selective contact between the cleaning composition and a surface of the first portion of the turbine engine component. The upper portion includes a plurality of fill holes in fluid communication with the cleaning chamber, and the lower portion includes a plurality of drain holes in fluid communication with the cleaning chamber. The manifold assembly is configured to selectively circulate the cleaning composition from a reservoir to the cleaning chamber via the plurality of fill holes, and recirculate the cleaning composition from the cleaning chamber to the reservoir via the plurality of drain holes. Methods for selectively cleaning a turbine engine component is also presented.
    Type: Application
    Filed: February 28, 2022
    Publication date: August 4, 2022
    Inventors: Nicole Jessica Tibbetts, Andrew James Jenkins, Bernard Patrick Bewlay, Evan Jarrett Dolley, John Watt, Christopher Perrett, Vincent Gerard Lauria