Patents by Inventor Bernhard Gleich

Bernhard Gleich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220229128
    Abstract: A magnetic resonance imaging antenna (114) comprising one or more coil elements (115) is disclosed. The magnetic resonance imaging antenna further comprises a radio frequency system (116) coupled to the one or more coil elements. The magnetic resonance imaging antenna further comprises a gas inlet (200) configured for receiving a pressurized gas. The magnetic resonance imaging antenna further comprises a gas outlet (202) configured for venting the pressurized gas. The magnetic resonance imaging antenna further comprises an electrical generator (117) configured for converting mechanical energy resulting from passing the pressurized gas from the gas inlet to the gas outlet into electricity while in the presence of an external magnetic field. The electrical generator is configured to power the radio frequency system using the electricity.
    Type: Application
    Filed: April 28, 2020
    Publication date: July 21, 2022
    Inventors: Bernhard Gleich, Steffen Weiss
  • Publication number: 20220175487
    Abstract: The invention relates to a passive medical identification device 1 to be used for identifying a medical tool such as, for example, a surgical instrument, if the medical tool is equipped with the identification device. The identification device comprises a casing 2, a magnetic object 3 arranged within the casing such that it is rotatable out of an equilibrium orientation by an external magnetic torque, and a restoring torque provider 4 such as, for example, a further magnetic object providing a restoring torque forcing the magnetic object back into the equilibrium orientation. The magnetic object 3 rotationally oscillates upon excitation by an external magnetic torque, thereby generating a response magnetic signal which is transduced into an induction signal that can provide a fingerprint specific for the respective identification device. Accordingly, the identity of the identification device and hence of the medical tool equipped with the identification device can be determined based on the induction signal.
    Type: Application
    Filed: December 3, 2021
    Publication date: June 9, 2022
    Inventors: BERNHARD GLEICH, JÜRGEN ERWIN RAHMER
  • Publication number: 20220028133
    Abstract: The invention provides for a medical imaging system (100, 400) comprising a memory (110) storing machine executable instructions (120) and a configured artificial neural network (122). The medical imaging system further comprises a processor (104) configured for controlling the medical imaging system. Execution of the machine executable instructions causes the processor to receive (200) magnetic resonance imaging data (124), wherein the magnetic resonance imaging data is BOLD functional magnetic resonance imaging data descriptive of a time dependent BOLD signal (1100) for each of a set of voxels. Execution of the machine executable instructions further causes the processor to construct (202) a set of initial signals (126) by reconstructing the time dependent BOLD signal for each of the set of voxels using the magnetic resonance imaging data.
    Type: Application
    Filed: November 26, 2019
    Publication date: January 27, 2022
    Inventors: Arne EWALD, Nick FLAESCHNER, Bernhard GLEICH, Ingmar GRAESSLIN, Peter BOERNERT, Ingo SCHMALE, Johannes Adrianus OVERWEG
  • Publication number: 20210244305
    Abstract: A wireless pressure sensing unit (20) comprises a membrane (25) forming an outer wall portion of a cavity and two permanent magnets (26,28) inside the cavity. One magnet is coupled to the membrane, and at least one magnet is free to oscillate with a rotational movement. At least one is free to oscillate with a rotational movement. The oscillation takes place at a resonance frequency, which is a function of the sensed pressure, which pressure influences the spacing between the two permanent magnets. This oscillation frequency can be sensed remotely by measuring a magnetic field altered by the oscillation. The wireless pressure sensing unit may be provided on a catheter (21) or guidewire.
    Type: Application
    Filed: June 11, 2019
    Publication date: August 12, 2021
    Inventors: Bernhard GLEICH, Jürgen Erwin RAHMER
  • Patent number: 11045107
    Abstract: Aspects of the present invention relate to a device and method for examining and using an electrical field in a magnetic gradient field, containing magnetic particles in an examination area of an object under examination, including introducing magnetic particles into at least part of the examination area of the object under examination; generating an electrical field at least in part of the examination area; generating a magnetic field having a spatial magnetic field strength profile with a first sub-zone with a low magnetic field strength and a second sub-zone with a higher magnetic field strength in the examination area; varying a spatial position of the two sub-zones in the examination area such that a magnetization of the particles changes locally; detecting signals which depend on the magnetization in the examination area influenced by this variation; evaluating the signals to obtain information about the spatial distribution of the magnetic particles in the examination area; and determining a conductivi
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: June 29, 2021
    Assignee: Koninklijke Philips N.V.
    Inventor: Bernhard Gleich
  • Patent number: 10997726
    Abstract: The invention provides for a medical instrument (100, 300, 400) comprising: a memory (110) for storing machine executable instructions (112) and a processor (106) for controlling the medical instrument.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: May 4, 2021
    Assignee: Koninklijke Philips N.V.
    Inventors: Bernhard Gleich, Jorn Borgert, Jochen Keupp
  • Publication number: 20200397510
    Abstract: A tracking system for tracking a marker device for being attached to a medical device is provided, whereby the marker device includes a sensing unit comprising a magnetic object which may be excited by an external magnetic or electromagnetic excitation field into a mechanical oscillation of the magnetic object, and the tracking system comprises a field generator for generating a predetermined magnetic or electromagnetic excitation field for inducing mechanical oscillations of the magnetic object, a transducer for transducing a magnetic or electromagnetic field generated by the induced mechanical oscillations of the magnetic object into one or more electrical response signals, and a position determination unit for determining the position of the marker device on the basis of the one or more electrical response signals.
    Type: Application
    Filed: December 10, 2019
    Publication date: December 24, 2020
    Inventors: BERNHARD GLEICH, Juergen Erwin Rahmer, Michael Grass
  • Publication number: 20200397320
    Abstract: The invention relates to a passive pressure sensor (501) for being introduced into the circulatory system of a human being and for being wirelessly read out by an outside reading system. The pressure sensor comprises a casing (502) with a diffusion blocking layer for maintaining a predetermined pressure within the casing and a magneto-mechanical oscillator with a magnetic object (508) providing a permanent magnetic moment. The magneto-mechanical oscillator transduces an external magnetic or electromagnetic excitation field into a mechanical oscillation of the magnetic object, wherein at least a part of the casing is flexible for allowing to transduce external pressure changes into changes of the mechanical oscillation of the magnetic object. The pressure sensor can be very small and nevertheless provide high quality pressure sensing.
    Type: Application
    Filed: December 10, 2019
    Publication date: December 24, 2020
    Inventors: BERNHARD GLEICH, Juergen Erwin Rahmer
  • Publication number: 20200400509
    Abstract: The invention relates to a measurement device 1 comprising a rotatable magnetic object 4 which can oscillate with a resonant frequency if excited by an external magnetic torque. The measurement device 1 is adapted such that the resonant frequency depends on the temperature or on another physical or chemical quantity like pressure, in order to allow for a wireless temperature measurement or measurement of the other physical or chemical quantity via an external magnetic field providing the external magnetic torque. This measurement device can be relatively small, can be read-out over a relatively larger distance and allows for a very accurate measurement.
    Type: Application
    Filed: December 10, 2019
    Publication date: December 24, 2020
    Inventors: BERNHARD GLEICH, Juergen Erwin Rahmer
  • Publication number: 20200397530
    Abstract: The invention relates to a marker device and a tracking system for tracking the marker device, wherein the marker device comprises a rotationally oscillatable magnetic object and wherein the rotational oscillation is excitable by an external magnetic field, i.e. a magnetic field which is generated by a magnetic field providing unit 20, 31 that is located outside of the marker device. The rotational oscillation of the magnetic object induces a current in coils, wherein based on these induced currents the position and optionally also the orientation of the marker device is determined. This wireless kind of tracking can be carried out with relatively small marker devices, which can be placed, for instance, in a guidewire, the marker devices can be read out over a relatively large distance and it is possible to use a single marker device for six degrees of freedom localization.
    Type: Application
    Filed: December 10, 2019
    Publication date: December 24, 2020
    Inventors: BERNHARD GLEICH, Juergen Erwin Rahmer, Michael Grass
  • Publication number: 20200359898
    Abstract: The invention provides for a magnetic resonance imaging (MRI) (100) system comprising a main magnet (102) with an with an adjustable main magnetic field. The MRI system further comprises a current source (124) for supplying RF current between multiple electrodes (122, 122?) divided between a first portion (122) and a second portion (122?). The current source is configured for supplying the RF current between the first portion and the second portion.
    Type: Application
    Filed: August 8, 2018
    Publication date: November 19, 2020
    Inventor: Bernhard GLEICH
  • Publication number: 20200250829
    Abstract: The invention provides for a medical instrument (100, 300, 400) comprising: a memory (110) for storing machine executable instructions (112) and a processor (106) for controlling the medical instrument.
    Type: Application
    Filed: August 30, 2018
    Publication date: August 6, 2020
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: BERNHARD GLEICH, JORN BORGERT, JOCHEN KEUPP
  • Patent number: 10267873
    Abstract: An apparatus for operation in a magnetic particle imaging mode for influencing and/or detecting magnetic particles in a field of view, and for operation in a magnetic resonance imaging mode, includes a selector having a selection field signal generator and selection field coils, a driver having a drive field signal generator and drive field coils for changing the position in space of the two sub-zones in the field of view by a magnetic drive field so that the magnetization of magnetic particles changes locally, and a focuser having a focus field signal generator and a focus field coil unit for changing the position in space of the field of view by a magnetic focus field.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: April 23, 2019
    Assignee: Koninklijke Philips N.V.
    Inventors: Bernhard Gleich, Juergen Erwin Rahmer
  • Patent number: 10168408
    Abstract: The present invention relates to an apparatus (100) for influencing and/or detecting magnetic particles in a field of view (28), in particular an MPI apparatus. The apparatus comprises selection field elements (116) for generating a magnetic selection field (50), drive field coils (124; 125, 126, 127) for changing the position in space of the two sub-zones (52, 54) by means of a magnetic drive field, focus field elements (116) for changing the position in space of the field of view (28) by means of a magnetic focus field, and receiving elements (148) for acquiring detection signals. A static system function of the apparatus is obtained in the absence of a magnetic focus field, from which an extended system function is generated by shifting a time-domain representation of said static system function proportional to the changes of the position of the field of view caused by appliance of the magnetic focus field.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: January 1, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jurgen Erwin Rahmer, Bernhard Gleich
  • Publication number: 20180303375
    Abstract: The invention relates to an examination apparatus (100), a method and a computer program for tracking permanently magnetic beads (107) that are transported by a fluid flowing through a channel (106) of an object (105). The examination apparatus (100) comprises at least three magnetic field sensors (101, 102, 103) and an evaluation unit (104). With the magnetic field sensors, the magnetic field caused by the permanently magnetic beads (107) is detected. Due to shear forces acting in the fluid, the permanently magnetic beads (107) are rotating and the magnetic field caused by the beads (107) is temporally varying. This temporal variation of the magnetic field is used by the evaluation unit (104) for discriminating sub-signals related to single beads (107) from the overall signal generated by the magnetic field sensors. Furthermore, the evaluation unit determines positioning information of individual beads on the basis of the discriminated sub-signals.
    Type: Application
    Filed: October 17, 2016
    Publication date: October 25, 2018
    Inventor: BERNHARD GLEICH
  • Patent number: 9918655
    Abstract: The present invention relates to an apparatus (100) for measuring the internal pressure of an examination object, in particular the internal pressure of a blood vessel, by use of a magnetic pressure measurement device (60, 70) introduced into the examination object, which apparatus comprises: —magnetic field generating means comprising magnetic field signal generator units (130) and magnetic field coils (136a, 136b, 136c) for generating a magnetic field for influencing the magnetization of the magnetic pressure measurement device (60, 70), receiving means comprising at least one signal receiving unit (140) and at least one receiving coil (148) for acquiring detection signals, which detection signals depend on the changes in magnetization of the magnetic pressure measurement device (60, 70) caused by the magnetic field and on the changes of the physical properties of the magnetic pressure measurement device caused by the internal pressure of the examination object, and evaluation means (153) for evaluating the
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: March 20, 2018
    Assignee: Koninklijke Philip N.V.
    Inventors: Bernhard Gleich, Ingo Schmale
  • Patent number: 9903837
    Abstract: An apparatus (100) detects magnetic particles in a field of view (28). The apparatus includes selection and focus magnetic field coil pairs (12, 14), drive pairs (16), and detection coils (148). A computer is configured to receive background signals with the detection coils, controls current supplied to the drive coil pair to shift the field of view in space, and reconstruct detection signals from the detection coils into an image of the field of view (28). The computer selects one or more frequency components of the detection signals and/or weighted by use of a frequency component specific signal quality factor obtained from the background signal measurements. Only the selected and/or weighted frequency components are used for reconstruction of the image.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: February 27, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jurgen Erwin Rahmer, Bernhard Gleich, Jurgen Weizenecker
  • Patent number: 9820672
    Abstract: A method for colon screening and collecting data by using Magnetic Particle Imaging wherein an imaging magnetic field is generated with a spatial distribution of the magnetic field strength such that the area of examination in the colon consists of a first sub-area with lower magnetic field strength, where the magnetization of a magnetic particle which was pre-delivered to the colon is not saturated, and a second sub-area with a higher magnetic field strength, where the magnetization of said magnetic particle is saturated. The spatial location of both sub-areas in the area of examination is modified so that the magnetization of said particles changes locally. Signals are acquired and are evaluated to obtain information about the spatial distribution of the signals in the area of examination. The method may be carried out during an entire peristaltic cycle in a colon portion or segment.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: November 21, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Jörn Borgert, Ingo Schmale, Jürgen Erwin Rahmer, Bernhard Gleich, Michael Harald Kuhn
  • Patent number: 9808173
    Abstract: Method for the spatially resolved determination of physical, chemical and/or biological properties or state variables and/or the change therein in an examination area of an examination object by determining the change in the spatial distribution and/or the mobility, particularly the mobility in rotation, of magnetic particles in this examination area or in parts thereof as a function of the effect of physical, chemical and/or biological influencing variables on at least a part-area and/or in the physical, chemical and/or biological conditions in at least a part-area of the examination area, by means of the following steps: a) introducing covered and/or coated magnetic particles with at least one solid, viscous and/or liquid shell or coating into at least part of the examination area and/or introducing magnetic particles into at least part of the examination area and/or covering and/or coating at least some of these particles in the examination area, b) generating a magnetic field with a spatial profile of the
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: November 7, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Bernhard Gleich
  • Patent number: 9770304
    Abstract: A multimodal fiducial marker for registration of multimodal data, including a first portion comprising magnetic material visible in magnetic particle imaging (MPI) data obtained by a magnetic particle imaging method and a second portion comprising a second material visible in image data obtained by another imaging method, which image data is registrable with the MPI data and a corresponding marker arrangement.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: September 26, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jürgen Erwin Rahmer, Bernhard Gleich, Jörn Borgert, Michael Harald Kuhn