Patents by Inventor Bhagawan Sahu

Bhagawan Sahu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10134585
    Abstract: Surface pretreatment of SiGe or Ge surfaces prior to gate oxide deposition cleans the SiGe or Ge surface to provide a hydrogen terminated surface or a sulfur passivated (or S—H) surface. Atomic layer deposition (ALD) of a high-dielectric-constant oxide at a low temperature is conducted in the range of 25-200° C. to form an oxide layer. Annealing is conducted at an elevated temperature. A method for oxide deposition on a damage sensitive III-V semiconductor surface conducts in-situ cleaning of the surface with cyclic pulsing of hydrogen and TMA (trimethyl aluminum) at a low temperature in the range of 100-200° C. Atomic layer deposition (ALD) of a high-dielectric-constant oxide forms an oxide layer. Annealing is conducted at an elevated temperature. The annealing can create a silicon terminated interfaces.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: November 20, 2018
    Assignee: The Regents of the University of California
    Inventors: Kasra Sardashti, Tobin Kaufman-Osborn, Tyler Kent, Andrew Kummel, Shariq Siddiqui, Bhagawan Sahu, Adam Brand, Naomi Yoshida
  • Patent number: 9997225
    Abstract: A system and method for simulating behavior of a spin transfer torque magnetic random access memory (STT-MRAM) device includes a hardware processor (HP) and logic instructions (LI) stored in memory. The LI are executed by the HP to configure a library of functional blocks (FBs) to capture physical phenomenon of at least one element of the STT-MRAM configured in the form of a magnetic stack. Selected elements of the stack are mapped into a set of selected FBs (SFBs). The mapping converts the stack to a spin device circuit (SDC) represented by the SFBs. The SFBs are assembled to form the SDC replicating the stack. The SDC includes an electron spin transport, a magnet-dynamics, a magnetic coupling and a coupled electron transport+magnet-dynamics FBs. A set of output parameters simulating the STT-MRAM is generated by the SFBs in response to receiving a set of input parameters.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: June 12, 2018
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Deepanjan Datta, Bhagawan Sahu, Francis Benistant
  • Publication number: 20160171135
    Abstract: A system and method for simulating behavior of a spin transfer torque magnetic random access memory (STT-MRAM) device includes a hardware processor (HP) and logic instructions (LI) stored in memory. The LI are executed by the HP to configure a library of functional blocks (FBs) to capture physical phenomenon of at least one element of the STT-MRAM configured in the form of a magnetic stack. Selected elements of the stack are mapped into a set of selected FBs (SFBs). The mapping converts the stack to a spin device circuit (SDC) represented by the SFBs. The SFBs are assembled to form the SDC replicating the stack. The SDC includes an electron spin transport, a magnet-dynamics, a magnetic coupling and a coupled electron transport+magnet-dynamics FBs. A set of output parameters simulating the STT-MRAM is generated by the SFBs in response to receiving a set of input parameters.
    Type: Application
    Filed: December 9, 2015
    Publication date: June 16, 2016
    Inventors: Deepanjan DATTA, Bhagawan SAHU, Francis BENISTANT
  • Publication number: 20160133716
    Abstract: Embodiments of the present invention provide a high-K dielectric film for use with silicon germanium (SiGe) or germanium channel materials, and methods of fabrication. As a first step of this process, an interfacial layer (IL) is formed on the semiconductor substrate providing reduced interface trap density. However, an ultra-thin layer is used as a barrier film to avoid germanium diffusion in high-k film and oxygen diffusion from the high-k film to the interfacial layer (IL), therefore, dielectric films such as aluminum oxide (Al2O3), zirconium oxide, or lanthanum oxide (La2O3) may be used. In addition, these films can provide high thermal budget. A second dielectric layer is then deposited on the first dielectric layer. The second dielectric layer is a high-k dielectric layer, providing a reduced effective oxide thickness (EOT), resulting in improved device performance.
    Type: Application
    Filed: January 14, 2016
    Publication date: May 12, 2016
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Shariq Siddiqui, Bhagawan Sahu, Rohit Galatage, Hoon Kim
  • Publication number: 20160056033
    Abstract: Surface pretreatment of SiGe or Ge surfaces prior to gate oxide deposition cleans the SiGe or Ge surface to provide a hydrogen terminated surface or a sulfur passivated (or S—H) surface. Atomic layer deposition (ALD) of a high-dielectric-constant oxide at a low temperature is conducted in the range of 25-200° C. to form an oxide layer. Annealing is conducted at an elevated temperature. A method for oxide deposition on a damage sensitive III_V semiconductor surface conducts in-situ cleaning of the surface with cyclic pulsing of hydrogen and TMA (trimethyl aluminum) at a low temperature in the range of 100-200° C. Atomic layer deposition (ALD) of a high-dielectric-constant oxide forms an oxide layer. Annealing is conducted at an elevated temperature. The annealing can create a silicon terminated interfaces.
    Type: Application
    Filed: August 19, 2015
    Publication date: February 25, 2016
    Inventors: Kasra Sardashti, Tobin Kaufman-Osborn, Tyler Kent, Andrew Kummel, Shariq Siddiqui, Bhagawan Sahu, Adam Brand, Naomi Yoshida
  • Patent number: 9263541
    Abstract: Embodiments of the present invention provide a high-K dielectric film for use with silicon germanium (SiGe) or germanium channel materials, and methods of fabrication. As a first step of this process, an interfacial layer (IL) is formed on the semiconductor substrate providing reduced interface trap density. However, an ultra-thin layer is used as a barrier film to avoid germanium diffusion in high-k film and oxygen diffusion from the high-k film to the interfacial layer (IL), therefore, dielectric films such as aluminum oxide (Al2O3), zirconium oxide, or lanthanum oxide (La2O3) may be used. In addition, these films can provide high thermal budget. A second dielectric layer is then deposited on the first dielectric layer. The second dielectric layer is a high-k dielectric layer, providing a reduced effective oxide thickness (EOT), resulting in improved device performance.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: February 16, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Shariq Siddiqui, Bhagawan Sahu, Rohit Galatage, Hoon Kim
  • Publication number: 20150311308
    Abstract: Embodiments of the present invention provide a high-K dielectric film for use with silicon germanium (SiGe) or germanium channel materials, and methods of fabrication. As a first step of this process, an interfacial layer (IL) is formed on the semiconductor substrate providing reduced interface trap density. However, an ultra-thin layer is used as a barrier film to avoid germanium diffusion in high-k film and oxygen diffusion from the high-k film to the interfacial layer (IL), therefore, dielectric films such as aluminum oxide (Al2O3), zirconium oxide, or lanthanum oxide (La2O3) may be used. In addition, these films can provide high thermal budget. A second dielectric layer is then deposited on the first dielectric layer. The second dielectric layer is a high-k dielectric layer, providing a reduced effective oxide thickness (EOT), resulting in improved device performance.
    Type: Application
    Filed: April 25, 2014
    Publication date: October 29, 2015
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Shariq Siddiqui, Bhagawan Sahu, Rohit Galatage, Hoon Kim
  • Publication number: 20150162435
    Abstract: Approaches for providing asymmetrical channel growth of a cladding layer over fins of a fin field effect transistor (FinFET) device are disclosed. Specifically, in one approach, a FinFET device comprises a set of fins formed from a substrate, a shallow trench isolation layer formed adjacent each of the set of fins, and a cladding layer (e.g., silicon germanium) formed over each of the set of fins, wherein a thickness of the cladding layer atop each of the set of fins is greater than a thickness of the cladding layer along each sidewall of the set of fins. In one embodiment, the thickness of the cladding layer atop the set of fins is approximately two times (2×) greater than the thickness of the cladding layer along each sidewall of the set of fins.
    Type: Application
    Filed: December 9, 2013
    Publication date: June 11, 2015
    Inventors: Bhagawan Sahu, Zoran Krivokapic
  • Publication number: 20140312434
    Abstract: One illustrative device disclosed herein includes at least one fin comprised of a semiconducting material, a layer of gate insulation material positioned adjacent an outer surface of the fin, a gate electrode comprised of graphene positioned on the layer of gate insulation material around at least a portion of the fin, and an insulating material formed on the gate electrode.
    Type: Application
    Filed: July 10, 2014
    Publication date: October 23, 2014
    Inventors: Zoran Krivokapic, Bhagawan Sahu
  • Patent number: 8815739
    Abstract: One illustrative device disclosed herein includes at least one fin comprised of a semiconducting material, a layer of gate insulation material positioned adjacent an outer surface of the fin, a gate electrode comprised of graphene positioned on the layer of gate insulation material around at least a portion of the fin, and an insulating material formed on the gate electrode.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: August 26, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Zoran Krivokapic, Bhagawan Sahu
  • Publication number: 20140015015
    Abstract: One illustrative device disclosed herein includes at least one fin comprised of a semiconducting material, a layer of gate insulation material positioned adjacent an outer surface of the fin, a gate electrode comprised of graphene positioned on the layer of gate insulation material around at least a portion of the fin, and an insulating material formed on the gate electrode.
    Type: Application
    Filed: July 10, 2012
    Publication date: January 16, 2014
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Zoran Krivokapic, Bhagawan Sahu