Patents by Inventor Binan Wang

Binan Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11669120
    Abstract: A current mirror circuit includes a current output terminal, a first transistor, a second transistor, and a digital-to-analog converter (DAC). The first transistor includes a first terminal coupled to a power rail, a second terminal coupled to a current source, and a third terminal coupled to the current source. The second transistor includes a first terminal coupled to the power rail, a second terminal coupled to the second terminal of the first transistor, and a third terminal coupled to the current output terminal. The DAC includes an output terminal coupled to the second transistor.
    Type: Grant
    Filed: June 16, 2022
    Date of Patent: June 6, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Mark Allan Shill, Binan Wang
  • Publication number: 20220308616
    Abstract: A current mirror circuit includes a current output terminal, a first transistor, a second transistor, and a digital-to-analog converter (DAC). The first transistor includes a first terminal coupled to a power rail, a second terminal coupled to a current source, and a third terminal coupled to the current source. The second transistor includes a first terminal coupled to the power rail, a second terminal coupled to the second terminal of the first transistor, and a third terminal coupled to the current output terminal. The DAC includes an output terminal coupled to the second transistor.
    Type: Application
    Filed: June 16, 2022
    Publication date: September 29, 2022
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Mark Allan SHILL, Binan WANG
  • Patent number: 11409318
    Abstract: A current mirror circuit includes a current output terminal, a first transistor, a second transistor, and a digital-to-analog converter (DAC). The first transistor includes a first terminal coupled to a power rail, a second terminal coupled to a current source, and a third terminal coupled to the current source. The second transistor includes a first terminal coupled to the power rail, a second terminal coupled to the second terminal of the first transistor, and a third terminal coupled to the current output terminal. The DAC includes an output terminal coupled to the second transistor.
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: August 9, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Mark Allan Shill, Binan Wang
  • Patent number: 11356114
    Abstract: In some examples, a system includes an integrated circuit comprising a transistor, a first amplifier coupled to the transistor, a second amplifier having an output and coupled to the transistor and the first amplifier, and an R-2R resistor ladder having multiple rungs. Each rung is switchably coupled to a terminal of the transistor and to the output of the second amplifier. The R-2R resistor ladder includes a resistor coupled to either the transistor or the output of the second amplifier.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: June 7, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Binan Wang
  • Publication number: 20210311519
    Abstract: A current mirror circuit includes a current output terminal, a first transistor, a second transistor, and a digital-to-analog converter (DAC). The first transistor includes a first terminal coupled to a power rail, a second terminal coupled to a current source, and a third terminal coupled to the current source. The second transistor includes a first terminal coupled to the power rail, a second terminal coupled to the second terminal of the first transistor, and a third terminal coupled to the current output terminal. The DAC includes an output terminal coupled to the second transistor.
    Type: Application
    Filed: June 15, 2021
    Publication date: October 7, 2021
    Inventors: Mark Allan SHILL, Binan WANG
  • Publication number: 20210305995
    Abstract: A delta sigma modulator includes two adders, an integrator stage, a reconfigurable local resonator, an analog-to-digital converter (ADC), and a digital-to-analog converter (DAC). A first adder receives an analog input signal at an additive input, and the integrator stage receives an output from the first adder and generates an integrated signal. The reconfigurable local resonator receives the integrated signal and generates a resonator output signal. A second adder receives the resonator output signal, the integrated signal, and the input signal. The ADC receives an output from the second adder and generates a digital output signal which can be provided to other circuits. The DAC receives the digital output signal, and generates and provides a feedback signal to a subtractive input of the first adder. The reconfigurable local resonator acts as a resonator, but reconfigures to act as a low pass filter in response to overload conditions.
    Type: Application
    Filed: March 25, 2020
    Publication date: September 30, 2021
    Inventor: Binan WANG
  • Patent number: 11133820
    Abstract: A delta sigma modulator includes two adders, an integrator stage, a reconfigurable local resonator, an analog-to-digital converter (ADC), and a digital-to-analog converter (DAC). A first adder receives an analog input signal at an additive input, and the integrator stage receives an output from the first adder and generates an integrated signal. The reconfigurable local resonator receives the integrated signal and generates a resonator output signal. A second adder receives the resonator output signal, the integrated signal, and the input signal. The ADC receives an output from the second adder and generates a digital output signal which can be provided to other circuits. The DAC receives the digital output signal, and generates and provides a feedback signal to a subtractive input of the first adder. The reconfigurable local resonator acts as a resonator, but reconfigures to act as a low pass filter in response to overload conditions.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: September 28, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Binan Wang
  • Publication number: 20210281274
    Abstract: In some examples, a system includes an integrated circuit comprising a transistor, a first amplifier coupled to the transistor, a second amplifier having an output and coupled to the transistor and the first amplifier, and an R-2R resistor ladder having multiple rungs. Each rung is switchably coupled to a terminal of the transistor and to the output of the second amplifier. The R-2R resistor ladder includes a resistor coupled to either the transistor or the output of the second amplifier.
    Type: Application
    Filed: March 4, 2021
    Publication date: September 9, 2021
    Inventor: Binan WANG
  • Patent number: 11068010
    Abstract: A current mirror circuit includes a current output terminal, a first transistor, a second transistor, and a digital-to-analog converter (DAC). The first transistor includes a first terminal coupled to a power rail, a second terminal coupled to a current source, and a third terminal coupled to the current source. The second transistor includes a first terminal coupled to the power rail, a second terminal coupled to the second terminal of the first transistor, and a third terminal coupled to the current output terminal. The DAC includes an output terminal coupled to the second transistor.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: July 20, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Mark Allan Shill, Binan Wang
  • Publication number: 20210191445
    Abstract: A current mirror circuit includes a current output terminal, a first transistor, a second transistor, and a digital-to-analog converter (DAC). The first transistor includes a first terminal coupled to a power rail, a second terminal coupled to a current source, and a third terminal coupled to the current source. The second transistor includes a first terminal coupled to the power rail, a second terminal coupled to the second terminal of the first transistor, and a third terminal coupled to the current output terminal. The DAC includes an output terminal coupled to the second transistor.
    Type: Application
    Filed: December 20, 2019
    Publication date: June 24, 2021
    Inventors: Mark Allan SHILL, Binan WANG
  • Patent number: 9692433
    Abstract: A voltage regulation system provides a relatively stable voltage source without introducing the typical costs of a ground buffer. The disclosed voltage regulation system includes a voltage regulator that is operative to detect a change of the load current and regulate a current bypass mechanism to stabilize a total supply current. For example, the voltage regulator includes a current sensor and a current compensation circuit. The current sensor is configure to generate a current compensation signal based on the load current change, whereas the current compensation circuit is configured to adjust a bypass current in response to the current compensation signal. As a result, the bypass current dynamically compensates the load current change such that the ground voltage of a variable load becomes relatively stable over a range of load currents.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: June 27, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Mark Allan Shill, Binan Wang
  • Publication number: 20160344399
    Abstract: A voltage regulation system provides a relatively stable voltage source without introducing the typical costs of a ground buffer. The disclosed voltage regulation system includes a voltage regulator that is operative to detect a change of the load current and regulate a current bypass mechanism to stabilize a total supply current. For example, the voltage regulator includes a current sensor and a current compensation circuit. The current sensor is configure to generate a current compensation signal based on the load current change, whereas the current compensation circuit is configured to adjust a bypass current in response to the current compensation signal. As a result, the bypass current dynamically compensates the load current change such that the ground voltage of a variable load becomes relatively stable over a range of load currents.
    Type: Application
    Filed: August 3, 2016
    Publication date: November 24, 2016
    Inventors: Mark Allan Shill, Binan Wang
  • Patent number: 9444478
    Abstract: A voltage regulation system provides a relatively stable voltage source without introducing the typical costs of a ground buffer. The disclosed voltage regulation system includes a voltage regulator that is operative to detect a change of the load current and regulate a current bypass mechanism to stabilize a total supply current. For example, the voltage regulator includes a current sensor and a current compensation circuit. The current sensor is configure to generate a current compensation signal based on the load current change, whereas the current compensation circuit is configured to adjust a bypass current in response to the current compensation signal. As a result, the bypass current dynamically compensates the load current change such that the ground voltage of a variable load becomes relatively stable over a range of load currents.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: September 13, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Mark Allan Shill, Binan Wang
  • Publication number: 20160072516
    Abstract: A voltage regulation system provides a relatively stable voltage source without introducing the typical costs of a ground buffer. The disclosed voltage regulation system includes a voltage regulator that is operative to detect a change of the load current and regulate a current bypass mechanism to stabilize a total supply current. For example, the voltage regulator includes a current sensor and a current compensation circuit. The current sensor is configure to generate a current compensation signal based on the load current change, whereas the current compensation circuit is configured to adjust a bypass current in response to the current compensation signal. As a result, the bypass current dynamically compensates the load current change such that the ground voltage of a variable load becomes relatively stable over a range of load currents.
    Type: Application
    Filed: September 9, 2015
    Publication date: March 10, 2016
    Inventors: Mark Allan Shill, Binan Wang
  • Publication number: 20130194009
    Abstract: A power on reset (POR) circuit is provided. For the POR circuit, a PMOS transistor is coupled to a first voltage rail at its source. A drive circuit is coupled to the drain of the PMOS transistor and is configured to output a POR signal. A voltage divider is coupled between the drain of the PMOS transistor and the second voltage rail. A switch network is provided as well, which has first and second switches. The first switch is coupled between the gate of the PMOS transistor and the voltage divider, and the second switch is coupled between the gate of the PMOS transistor and the voltage divider. A controller is also coupled to control the first and second switches, wherein the first and second switches are complementary driven.
    Type: Application
    Filed: January 30, 2012
    Publication date: August 1, 2013
    Applicant: Texas Instruments Incorporated
    Inventors: Binan Wang, Paul Stulik
  • Patent number: 7626525
    Abstract: A cascaded delta-sigma modulator includes a first stage delta-sigma modulator (10A) having first adder (2) followed by first (3) and second (6) integrators, a second adder (4), and a quantizer (7) the output of which is fed back to the first adder by an A/D (9). A gain circuit (5) is also connected between the first integrator and the second adder. The quantizer output is coupled by interstage circuitry to a second stage converter (100B) having a transfer function represented by the expression OUT(z)=z?nIN(z)+G(z)E2(z). An error cancellation circuit (12) includes inputs coupled to the output of the quantizer and an output of the second stage converter so as to provide a flat transfer function of the cascaded first stage delta-sigma modulator and second stage converter and the error cancellation circuit, despite non-flatness in a transfer function of the first stage delta-sigma modulator.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: December 1, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Binling Zhou, Binan Wang
  • Patent number: 7535210
    Abstract: A synchronous DC-to-DC converter includes an inductor coupled to receive an input voltage, a first transistor having a source coupled to a first reference voltage and a drain coupled to the inductor, and a second transistor having a source coupled to an output conductor to produce an output voltage and a drain coupled to the inductor. A feedback signal representative of a value of the output voltage is generated, and a switch control signal is produced in response to the input voltage and a second reference voltage. The second transistor is turned off in response to the switch control signal each time the inductor current has decayed to zero to prevent reverse current flow through the inductor. A regulating signal indicates whether or not the feedback voltage exceeds the second reference voltage, to regulate the output voltage in a pulse-frequency modulation mode.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: May 19, 2009
    Assignee: Texas Instruments Incorporated
    Inventor: Binan Wang
  • Publication number: 20080272944
    Abstract: A cascaded delta-sigma modulator includes a first stage delta-sigma modulator (10A) having first adder (2) followed by first (3) and second (6) integrators, a second adder (4), and a quantizer (7) the output of which is fed back to the first adder by an A/D (9). A gain circuit (5) is also connected between the first integrator and the second adder. The quantizer output is coupled by interstage circuitry to a second stage converter (100B) having a transfer function represented by the expression OUT(z)=z?nIN(z)+G(z)E2(z). An error cancellation circuit (12) includes inputs coupled to the output of the quantizer and an output of the second stage converter so as to provide a flat transfer function of the cascaded first stage delta-sigma modulator and second stage converter and the error cancellation circuit, despite non-flatness in a transfer function of the first stage delta-sigma modulator.
    Type: Application
    Filed: May 3, 2007
    Publication date: November 6, 2008
    Inventors: Binling Zhou, Binan Wang
  • Publication number: 20080094861
    Abstract: A synchronous DC-to-DC converter includes an inductor coupled to receive an input voltage, a first transistor having a source coupled to a first reference voltage and a drain coupled to the inductor, and a second transistor having a source coupled to an output conductor to produce an output voltage and a drain coupled to the inductor. A feedback signal representative of a value of the output voltage is generated, and a switch control signal is produced in response to the input voltage and a second reference voltage. The second transistor is turned off in response to the switch control signal each time the inductor current has decayed to zero to prevent reverse current flow through the inductor. A regulating signal indicates whether or not the feedback voltage exceeds the second reference voltage, to regulate the output voltage in a pulse-frequency modulation mode.
    Type: Application
    Filed: October 18, 2006
    Publication date: April 24, 2008
    Inventor: Binan Wang
  • Patent number: 7123057
    Abstract: A voltage monitor circuit for biasing a well region of a CMOS circuit includes a self-biased comparator which compares first (INP) and second (INN) input signals. The comparator includes first (MN1) and second (MN2) N-channel transistors with grounded sources, a drain of the first N-channel transistor and a gate of the second N-channel transistor being coupled to a first output (OUTN), and a drain of the second N-channel transistor and a gate of the first N-channel transistor being coupled to a second output (OUTP). First (MP1) and second (MP2) P-channel transistors are operated to couple the second or first input signal to the second or first output, respectively, by controlling the gate-to-source voltage of the first or second P-channel transistor according to the polarity of a voltage difference between the first and second input signals.
    Type: Grant
    Filed: June 19, 2003
    Date of Patent: October 17, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Binan Wang, Paul Stulik