Patents by Inventor Bing Dang

Bing Dang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180212120
    Abstract: Magnetic regions of at least one of chiplet or a receiving substrate are used to permit magnetically guided precision placement of chiplets on the receiving substrate. In some embodiments, a scanning magnetic head can be used to release individual chiplets from a temporary support substrate to the receiving substrate. Structures are provided in which a magnetic moment of a controlled orientation exists between the transferred chiplets and the receiving substrate.
    Type: Application
    Filed: January 26, 2017
    Publication date: July 26, 2018
    Inventors: Stephen W. Bedell, Bing Dang, Ning Li, Frank R. Libsch, Devendra K. Sadana
  • Patent number: 10033081
    Abstract: Embodiments include package structures having integrated waveguides to enable high data rate communication between package components. For example, a package structure includes a package substrate having an integrated waveguide, and first and second integrated circuit chips mounted to the package substrate. The first integrated circuit chip is coupled to the integrated waveguide using a first transmission line to waveguide transition, and the second integrated circuit chip is coupled to the integrated waveguide using a second transmission line to waveguide transition. The first and second integrated circuit chips are configured to communicate by transmitting signals using the integrated waveguide within the package carrier.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: July 24, 2018
    Assignee: International Business Machines Corporation
    Inventors: Bing Dang, Duixian Liu, Jean-Olivier Plouchart, Alberto Valdes-Garcia
  • Patent number: 10032943
    Abstract: A semiconductor structure includes a thin-film device layer, an optoelectronic device disposed in the thin-film device layer, and a surrogate substrate permanently attached to the thin film device layer. The surrogate substrate is optically transparent and has a thermal conductivity of at least 300 W/m-K. The optoelectronic device excitable by visible light transmitted through the surrogate substrate. A method of fabricating the semiconductor structure includes fabricating the optoelectronic device in a device layer thin-film of SiC on a silicon wafer of a first diameter, transferring the device layer thin-film of SiC from the silicon wafer, and permanently bonding the device layer thin-film to a SiC surrogate substrate of a second diameter.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: July 24, 2018
    Assignee: International Business Machines Corporation
    Inventors: Bing Dang, John U. Knickerbocker, Steven Lorenz Wright, Cornelia Tsang Yang
  • Patent number: 10032973
    Abstract: Magnetic regions of at least one of chiplet or a receiving substrate are used to permit magnetically guided precision placement of chiplets on the receiving substrate. In some embodiments, a scanning magnetic head can be used to release individual chiplets from a temporary support substrate to the receiving substrate. Structures are provided in which a magnetic moment of a controlled orientation exists between the transferred chiplets and the receiving substrate.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: July 24, 2018
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Bing Dang, Ning Li, Frank R. Libsch, Devendra K. Sadana
  • Publication number: 20180182672
    Abstract: A support structure for use in fan-out wafer level packaging is provided that includes, a silicon handler wafer having a first surface and a second surface opposite the first surface, a release layer is located above the first surface of the silicon handler wafer, and a layer selected from the group consisting of an adhesive layer and a redistribution layer is located on a surface of the release layer. After building-up a fan-out wafer level package on the support structure, infrared radiation is employed to remove (via laser ablation) the release layer, and thus remove the silicon handler wafer from the fan-out wafer level package.
    Type: Application
    Filed: February 23, 2018
    Publication date: June 28, 2018
    Inventors: Bing Dang, Jeffrey D. Gelorme, John U. Knickerbocker
  • Publication number: 20180174882
    Abstract: A bonding material including a phenoxy resin thermoplastic component, and a carbon black filler component. The carbon black filler component is present in an amount greater than 1 wt. %. The carbon black filler converts the phenoxy resin thermoplastic component from a material that transmits infra-red (IR) wavelengths to a material that absorbs a substantial portion of infra-red (IR) wavelengths.
    Type: Application
    Filed: February 20, 2018
    Publication date: June 21, 2018
    Inventors: Bing Dang, Jeffrey D. Gelorme, John U. Knickerbocker
  • Patent number: 10002856
    Abstract: Methods of transferring micro-array LEDs of various colors onto a surface of a display substrate are provided. The transferring includes releasing micro-LEDs of a specific color from a structure that includes a releasable material onto a display substrate. The releasable material may be a laser ablatable material or a material that is readily dissolved in a specific etchant.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: June 19, 2018
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Bing Dang, Ning Li, Frank R. Libsch, Devendra K. Sadana
  • Publication number: 20180138072
    Abstract: Various embodiments process semiconductor devices. In one embodiment, a release layer is applied to a handler. The at least one singulated semiconductor device is bonded to the handler. The at least one singulated semiconductor device is packaged while it is bonded to the handler. The release layer is ablated by irradiating the release layer through the handler with a laser. The the at least one singulated semiconductor device is removed from the transparent handler after the release layer has been ablated.
    Type: Application
    Filed: December 27, 2017
    Publication date: May 17, 2018
    Inventors: Paul S. ANDRY, Bing DANG, Jeffrey Donald GELORME, Li-Wen HUNG, John U. KNICKERBOCKER, Cornelia Tsang YANG
  • Publication number: 20180135197
    Abstract: A method provides a structure that includes a substrate having a metal layer disposed on a surface and a metal feature disposed on the metal layer. The method further includes immersing the structure in a plating bath contained in an electroplating cell, the plating bath containing a selected solder material; applying a voltage potential to the structure, where the structure functions as a working electrode in combination with a reference electrode and a counter electrode that are also immersed in the plating bath; and maintaining the voltage potential at a predetermined value to deposit the selected solder material selectively only on the metal feature and not on the metal layer. An apparatus configured to practice the method is also disclosed.
    Type: Application
    Filed: December 22, 2017
    Publication date: May 17, 2018
    Inventors: Qianwen Chen, Bing Dang, Yu Luo, Joana Sofia Branquinho Teresa Maria
  • Publication number: 20180133152
    Abstract: Electromechanical substance delivery devices are provided which implement low-power electromechanical release mechanisms for controlled delivery of substances such as drugs and medication. For example, an electromechanical device includes a substrate having a cavity formed in a surface of the substrate, a membrane disposed on the surface of the substrate covering an opening of the cavity, and a seal disposed between the membrane and the surface of the substrate. The seal surrounds the opening of the cavity, and the seal and membrane are configured to enclose the cavity and retain a substance within the cavity. An electrode structure is configured to locally heat a portion of the membrane in response to a control voltage applied to the electrode structure, and create a stress that causes a rupture in the locally heated portion of the membrane to release the substance from within the cavity.
    Type: Application
    Filed: December 22, 2017
    Publication date: May 17, 2018
    Inventors: S. Jay Chey, Bing Dang, John U. Knickerbocker, Kenneth F. Latzko, Joana Sofia Branquinho Teresa Maria, Lavanya Turlapati, Bucknell C. Webb, Steven L. Wright
  • Publication number: 20180138073
    Abstract: Various embodiments process semiconductor devices. In one embodiment, a release layer is applied to a handler. The release layer comprises at least one additive that adjusts a frequency of electro-magnetic radiation absorption property of the release layer. The additive comprises, for example, a 355 nm chemical absorber and/or chemical absorber for one of more wavelengths in a range comprising 600 nm to 740 nm. The at least one singulated semiconductor device is bonded to the handler. The at least one singulated semiconductor device is packaged while it is bonded to the handler. The release layer is ablated by irradiating the release layer through the handler with a laser. The the at least one singulated semiconductor device is removed from the transparent handler after the release layer has been ablated.
    Type: Application
    Filed: December 27, 2017
    Publication date: May 17, 2018
    Inventors: Paul S. ANDRY, Bing DANG, Jeffrey Donald GELORME, Li-Wen HUNG, John U. KNICKERBOCKER, Cornelia Tsang YANG
  • Publication number: 20180117245
    Abstract: A digital biomedical device includes a substrate forming a reservoir, a membrane comprising a first layer and a second layer having a strain therebetween, the membrane sealing the reservoir, and a controller configured to activate the membrane and release at least a portion of the strain causing the membrane curl and open the reservoir.
    Type: Application
    Filed: December 30, 2017
    Publication date: May 3, 2018
    Inventors: BING DANG, JOHN U. KNICKERBOCKER, JOANA S.B.T. MARIA, BUCKNELL C. WEBB, STEVEN L. WRIGHT
  • Publication number: 20180123960
    Abstract: The application provides a routing method which includes configuring a first path and a second path in charge of load sharing for a data flow, and configuring a third path in charge of reroute protection. A first group entry is generated for instructing the forwarding device to use the first path and the second path as load-sharing paths and use the third path to perform reroute protection on the first path and the second path. A flow entry for instructing to perform an operation of going to the first group entry is generated.
    Type: Application
    Filed: December 29, 2017
    Publication date: May 3, 2018
    Inventors: Shihai HU, Peng MA, Bing DANG
  • Patent number: 9947567
    Abstract: A bonding material including a phenoxy resin thermoplastic component, and a carbon black filler component. The carbon black filler component is present in an amount greater than 1 wt. %. The carbon black filler converts the phenoxy resin thermoplastic component from a material that transmits infra-red (IR) wavelengths to a material that absorbs a substantial portion of infra-red (IR) wavelengths.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: April 17, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bing Dang, Jeffrey D. Gelorme, John U. Knickerbocker
  • Patent number: 9947570
    Abstract: Various embodiments process semiconductor devices. In one embodiment, a release layer is applied to a handler. The release layer comprises at least one additive that adjusts a frequency of electro-magnetic radiation absorption property of the release layer. The additive comprises, for example, a 355 nm chemical absorber and/or chemical absorber for one of more wavelengths in a range comprising 600 nm to 740 nm. The at least one singulated semiconductor device is bonded to the handler. The at least one singulated semiconductor device is packaged while it is bonded to the handler. The release layer is ablated by irradiating the release layer through the handler with a laser. The at least one singulated semiconductor device is removed from the transparent handler after the release layer has been ablated.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: April 17, 2018
    Assignee: International Business Machines Corporation
    Inventors: Paul S. Andry, Bing Dang, Jeffrey Donald Gelorme, Li-Wen Hung, John U. Knickerbocker, Cornelia Tsang Yang
  • Patent number: 9937124
    Abstract: Electromechanical substance delivery devices are provided which implement low-power electromechanical release mechanisms for controlled delivery of substances such as drugs and medication. For example, an electromechanical device includes a substrate having a cavity formed in a surface of the substrate, a membrane disposed on the surface of the substrate covering an opening of the cavity, and a seal disposed between the membrane and the surface of the substrate. The seal surrounds the opening of the cavity, and the seal and membrane are configured to enclose the cavity and retain a substance within the cavity. An electrode structure is configured to locally heat a portion of the membrane in response to a control voltage applied to the electrode structure, and create a stress that causes a rupture in the locally heated portion of the membrane to release the substance from within the cavity.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: April 10, 2018
    Assignee: International Business Machines Corporation
    Inventors: S. Jay Chey, Bing Dang, John U. Knickerbocker, Kenneth F. Latzko, Joana Sofia Branquinho Teresa Maria, Lavanya Turlapati, Bucknell C. Webb, Steven L. Wright
  • Publication number: 20180098432
    Abstract: An electro-optical module assembly is provided that includes a flexible substrate having a first surface and a second surface opposite the first surface, wherein the flexible substrate contains an opening located therein that extends from the first surface to the second surface. An optical component is located on the second surface of the flexible substrate and is positioned to have a surface exposed by the opening. At least one electronic component is located on a first portion of the first surface of the flexible substrate, and at least one micro-energy source is located on a second portion of the first surface of the flexible substrate.
    Type: Application
    Filed: November 22, 2017
    Publication date: April 5, 2018
    Inventors: Paul S. Andry, Qianwen Chen, Bing Dang, John U. Knickerbocker, Minhua Lu, Robert J. Polastre, Bucknell C. Webb
  • Publication number: 20180095125
    Abstract: An electro-optical module assembly is provided that includes a flexible substrate having a first surface and a second surface opposite the first surface, wherein the flexible substrate contains an opening located therein that extends from the first surface to the second surface. An optical component is located on the second surface of the flexible substrate and is positioned to have a surface exposed by the opening. At least one electronic component is located on a first portion of the first surface of the flexible substrate, and at least one micro-energy source is located on a second portion of the first surface of the flexible substrate.
    Type: Application
    Filed: November 22, 2017
    Publication date: April 5, 2018
    Inventors: Paul S. Andry, Qianwen Chen, Bing Dang, John U. Knickerbocker, Minhua Lu, Robert J. Polastre, Bucknell C. Webb
  • Publication number: 20180098433
    Abstract: An electro-optical module assembly is provided that includes a flexible substrate having a first surface and a second surface opposite the first surface, wherein the flexible substrate contains an opening located therein that extends from the first surface to the second surface. An optical component is located on the second surface of the flexible substrate and is positioned to have a surface exposed by the opening. At least one electronic component is located on a first portion of the first surface of the flexible substrate, and at least one micro-energy source is located on a second portion of the first surface of the flexible substrate.
    Type: Application
    Filed: November 22, 2017
    Publication date: April 5, 2018
    Inventors: Paul S. Andry, Qianwen Chen, Bing Dang, John U. Knickerbocker, Minhua Lu, Robert J. Polastre, Bucknell C. Webb
  • Publication number: 20180096179
    Abstract: Embodiments include systems, methods, and computer program products for tracking and sensing medical assets. Systems include a plurality of long range transmitters. Systems also include a medical asset box including a medical asset, a radio frequency ID microchip in proximity to the medical asset, and an extended antenna that is capable of receiving a signal from the radio frequency ID microchip and transmitting the signal to an external device.
    Type: Application
    Filed: October 5, 2016
    Publication date: April 5, 2018
    Inventors: BING DANG, LI-WEN HUNG, JOHN U. KNICKERBOCKER, SHRIYA KUMAR, DUIXIAN LIU, ENRIQUE VARGAS