Patents by Inventor Bo H. Vanderberg

Bo H. Vanderberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10483086
    Abstract: An ion implantation system and method are provided where an ion beam is tuned to a first process recipe. The ion beam is scanned along a scan plane at a first frequency, defining a first scanned ion beam. A beam profiling apparatus is translated through the first scanned ion beam and one or more properties of the first scanned ion beam are measured across a width of the first scanned ion, thus defining a first beam profile associated with the first scanned ion beam. The ion beam is then scanned at a second frequency, thus defining a second scanned ion beam, wherein the second frequency is less than the first frequency. A second beam profile associated with the second scanned ion beam is determined based, at least in part, on the first beam profile. Ions are subsequently implanted into a workpiece via the second scanned ion beam.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: November 19, 2019
    Assignee: Axcelis Technologies, Inc.
    Inventors: Andy M. Ray, Edward C. Eisner, Bo H. Vanderberg
  • Patent number: 10037877
    Abstract: An ion implantation system has an ion source forming an ion beam. An mass analyzer defines and varies a mass analyzed beam along a beam path. A moveable mass resolving aperture assembly has a resolving aperture whose position is selectively varied in response to the variation of the beam path by the mass analyzer. A deflecting deceleration element positioned selectively deflects the beam path and selectively decelerate the mass analyzed beam. A controller selectively operates the ion implantation system in both a drift mode and decel mode. The controller passes the mass analyzed beam along a first path through the resolving aperture without deflection or deceleration in the drift mode and deflects and decelerates the beam along a second path in the decel mode. The position of the resolving aperture is selectively varied based on the variation in the beam path through the mass analyzer and the deflecting deceleration element.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: July 31, 2018
    Assignee: Axcelis Technologies, Inc
    Inventors: Bo H. Vanderberg, Edward C. Eisner
  • Patent number: 9711329
    Abstract: A method for improving the productivity of a hybrid scan implanter by determining an optimum scan width is provided. A method of tuning a scanned ion beam is provided, where a desired beam current is determined to implant a workpiece with desired properties. The scanned beam is tuned utilizing a setup Faraday cup. A scan width is adjusted to obtain an optimal scan width using setup Faraday time signals. Optics are tuned for a desired flux value corresponding to a desired dosage. Uniformity of a flux distribution is controlled when the desired flux value is obtained. An angular distribution of the ion beam is further measured.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: July 18, 2017
    Assignee: Axelis Technologies, Inc.
    Inventors: Bo H. Vanderberg, Andy M. Ray
  • Patent number: 9679739
    Abstract: A system and method are provided for implanting ions at low energies into a workpiece. An ion source configured to generate an ion beam is provided, wherein a mass resolving magnet is configured to mass resolve the ion beam. The ion beam may be a ribbon beam or a scanned spot ion beam. A mass resolving aperture positioned downstream of the mass resolving magnet filters undesirable species from the ion beam. A combined electrostatic lens system is positioned downstream of the mass analyzer, wherein a path of the ion beam is deflected and contaminants are generally filtered out of the ion beam, while concurrently decelerating and parallelizing the ion beam. A workpiece scanning system is further positioned downstream of the combined electrostatic lens system, and is configured to selectively translate a workpiece in one or more directions through the ion beam, therein implanting ions into the workpiece.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: June 13, 2017
    Assignee: Axcelis Technologies, Inc.
    Inventors: Edward C. Eisner, Bo H. Vanderberg
  • Patent number: 9443698
    Abstract: A hybrid scanner is disclosed that is capable of performing at least one of an electric and magnetic scanning of an ion beam. The hybrid scanner comprises a plurality of magnetic elements configured to generate a magnetic field across the ion beam for magnetic scanning, and a plurality of electric elements configured to generate an electric field proximate to the ion beam for electric scanning. A power delivery controller is coupled to at least one of the magnetic elements and at least one of the electric elements, and is configured to selectively provide power to the magnetic and electric elements.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: September 13, 2016
    Assignee: Axcelis Technologies, Inc.
    Inventor: Bo H. Vanderberg
  • Publication number: 20160189917
    Abstract: An ion implantation system employs a mass analyzer for both mass analysis and angle correction. An ion source generates an ion beam along a beam path. A mass analyzer is located downstream of the ion source that performs mass analysis and angle correction on the ion beam. A resolving aperture within an aperture assembly is located downstream of the mass analyzer component and along the beam path. The resolving aperture has a size and shape according to a selected mass resolution and a beam envelope of the ion beam. An angle measurement system is located downstream of the resolving aperture and obtains an angle of incidence value of the ion beam. A control system derives a magnetic field adjustment for the mass analyzer according to the angle of incidence value of the ion beam from the angle measurement system.
    Type: Application
    Filed: December 28, 2015
    Publication date: June 30, 2016
    Inventors: Bo H. Vanderberg, Edward C. Eisner
  • Publication number: 20160189928
    Abstract: A method for improving the productivity of a hybrid scan implanter by determining an optimum scan width is provided. A method of tuning a scanned ion beam is provided, where a desired beam current is determined to implant a workpiece with desired properties. The scanned beam is tuned utilizing a setup Faraday cup. A scan width is adjusted to obtain an optimal scan width using setup Faraday time signals. Optics are tuned for a desired flux value corresponding to a desired dosage. Uniformity of a flux distribution is controlled when the desired flux value is obtained. An angular distribution of the ion beam is further measured.
    Type: Application
    Filed: December 28, 2015
    Publication date: June 30, 2016
    Inventors: Bo H. Vanderberg, Andy M. Ray
  • Publication number: 20160189926
    Abstract: An ion implantation system and method are provided where an ion beam is tuned to a first process recipe. The ion beam is scanned along a scan plane at a first frequency, defining a first scanned ion beam. A beam profiling apparatus is translated through the first scanned ion beam and one or more properties of the first scanned ion beam are measured across a width of the first scanned ion, thus defining a first beam profile associated with the first scanned ion beam. The ion beam is then scanned at a second frequency, thus defining a second scanned ion beam, wherein the second frequency is less than the first frequency. A second beam profile associated with the second scanned ion beam is determined based, at least in part, on the first beam profile. Ions are subsequently implanted into a workpiece via the second scanned ion beam.
    Type: Application
    Filed: December 22, 2015
    Publication date: June 30, 2016
    Inventors: Andy M. Ray, Edward C. Eisner, Bo H. Vanderberg
  • Publication number: 20160189912
    Abstract: A system and method are provided for implanting ions at low energies into a workpiece. An ion source configured to generate an ion beam is provided, wherein a mass resolving magnet is configured to mass resolve the ion beam. The ion beam may be a ribbon beam or a scanned spot ion beam. A mass resolving aperture positioned downstream of the mass resolving magnet filters undesirable species from the ion beam. A combined electrostatic lens system is positioned downstream of the mass analyzer, wherein a path of the ion beam is deflected and contaminants are generally filtered out of the ion beam, while concurrently decelerating and parallelizing the ion beam. A workpiece scanning system is further positioned downstream of the combined electrostatic lens system, and is configured to selectively translate a workpiece in one or more directions through the ion beam, therein implanting ions into the workpiece.
    Type: Application
    Filed: December 22, 2015
    Publication date: June 30, 2016
    Inventors: Edward C. Eisner, Bo H. Vanderberg
  • Patent number: 8963107
    Abstract: Methods and apparatus for reducing energy contamination can be provided to a beam line assembly for ion implantation. Protrusions comprising surface areas and grooves therebetween can face neutral trajectories within a line of sight view from the workpiece within the beam line assembly. The protrusions can alter the course of the neutral trajectories away from the workpiece or cause alternate trajectories for further impacting before hitting a workpiece, and thereby, further reduce energy contamination for more sensitive implants.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: February 24, 2015
    Assignee: Axcelis Technologies, Inc.
    Inventors: Edward C. Eisner, Bo H. Vanderberg
  • Patent number: 8637838
    Abstract: A scanning system including a scanning element, a beam profiler, analysis system, and a ZFE-limiting element, is disclosed. The scanning element is configured to scan an ion beam over an ion beam scan path. The beam profiler measures beam current of the ion beam as it is scanned over the ion beam scan path, and the analysis system analyzes the measured beam current to detect a ZFE condition. The ZFE-limiting element, which is upstream of the beam profiler and is coupled to the analysis system via a feedback path, is configured to selectively apply an electric field to the scanned ion beam based on whether the ZFE condition is detected. The selectively applied electric field induces a change in the scanned beam to limit the ZFE condition.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: January 28, 2014
    Assignee: Axcelis Technologies, Inc.
    Inventors: Edward C. Eisner, Bo H. Vanderberg
  • Patent number: 8502173
    Abstract: A method comprising introducing an injected gas (e.g., Argon, Xenon) into a beam line region comprising a magnetic scanner is provided herein. The injected gas improves beam current by enhancing (e.g., increasing, decreasing) charge neutralization of the magnetic ion beam (e.g., the ion beam at regions where the scanning magnetic field is non-zero) thereby reducing the current loss due to the zero field effect (ZFE). By reducing the current loss in regions having a magnetic field, the magnetic beam current is increased (e.g., the beam current is increased in regions where the magnetic field is non-zero) raising the overall beam current in a uniform manner over an entire scan path and thereby reducing the effect of the ZFE. In other words, the ZFE is removed by effectively minimizing it through an increase in the magnetized beam current.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: August 6, 2013
    Assignee: Axcelis Technologies Inc.
    Inventors: Bo H. Vanderberg, Steven C. Hays, Andy Ray
  • Publication number: 20130181139
    Abstract: Methods and apparatus for reducing energy contamination can be provided to a beam line assembly for ion implantation. Protrusions comprising surface areas and grooves therebetween can face neutral trajectories within a line of sight view from the workpiece within the beam line assembly. The protrusions can alter the course of the neutral trajectories away from the workpiece or cause alternate trajectories for further impacting before hitting a workpiece, and thereby, further reduce energy contamination for more sensitive implants.
    Type: Application
    Filed: January 12, 2012
    Publication date: July 18, 2013
    Applicant: Axcelis Technologies, Inc.
    Inventors: Edward C. EISNER, Bo H. VANDERBERG
  • Publication number: 20130146760
    Abstract: A scanning system including a scanning element, a beam profiler, analysis system, and a ZFE-limiting element, is disclosed. The scanning element is configured to scan an ion beam over an ion beam scan path. The beam profiler measures beam current of the ion beam as it is scanned over the ion beam scan path, and the analysis system analyzes the measured beam current to detect a ZFE condition. The ZFE-limiting element, which is upstream of the beam profiler and is coupled to the analysis system via a feedback path, is configured to selectively apply an electric field to the scanned ion beam based on whether the ZFE condition is detected. The selectively applied electric field induces a change in the scanned beam to limit the ZFE condition.
    Type: Application
    Filed: December 13, 2011
    Publication date: June 13, 2013
    Applicant: Axcelis Technologies, Inc.
    Inventors: Edward C. Eisner, Bo H. Vanderberg
  • Patent number: 8378313
    Abstract: One embodiment relates to an ion implanter. The ion implanter includes an ion source to generate an ion beam, as well as a scanner to scan the ion beam across a surface of a workpiece along a first axis. The ion implanter also includes a deflection filter downstream of the scanner to ditheredly scan the ion beam across the surface of the workpiece along a second axis.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: February 19, 2013
    Assignee: Axcelis Technologies, Inc.
    Inventors: Edward C. Eisner, Andy Ray, Bo H. Vanderberg
  • Publication number: 20120248326
    Abstract: One embodiment relates to an ion implanter. The ion implanter includes an ion source to generate an ion beam, as well as a scanner to scan the ion beam across a surface of a workpiece along a first axis. The ion implanter also includes a deflection filter downstream of the scanner to ditheredly scan the ion beam across the surface of the workpiece along a second axis.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 4, 2012
    Applicant: Axcelis Technologies, Inc.
    Inventors: Edward C. Eisner, Andy Ray, Bo H. Vanderberg
  • Patent number: 8278634
    Abstract: A method comprising introducing an injected gas (e.g., Argon, Xenon) into a beam line region comprising a magnetic scanner is provided herein. The injected gas improves beam current by enhancing (e.g., increasing, decreasing) charge neutralization of the magnetic ion beam (e.g., the ion beam at regions where the scanning magnetic field is non-zero) thereby reducing the current loss due to the zero field effect (ZFE). By reducing the current loss in regions having a magnetic field, the magnetic beam current is increased (e.g., the beam current is increased in regions where the magnetic field is non-zero) raising the overall beam current in a uniform manner over an entire scan path and thereby reducing the effect of the ZFE. In other words, the ZFE is removed by effectively minimizing it through an increase in the magnetized beam current.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: October 2, 2012
    Assignee: Axcelis Technologies, Inc.
    Inventors: Bo H. Vanderberg, Steven C. Hays, Andy Ray
  • Patent number: 8237135
    Abstract: An ion implantation method and system that incorporate beam neutralization to mitigate beam blowup, which can be particularly problematic in low-energy, high-current ion beams. The beam neutralization component can be located in the system where blowup is likely to occur. The neutralization component includes a varying energizing field generating component that generates plasma that neutralizes the ion beam and thereby mitigates beam blowup. The energizing field is generated with varying frequency and/or field strength in order to maintain the neutralizing plasma while mitigating the creation of plasma sheaths that reduce the effects of the neutralizing plasma.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: August 7, 2012
    Assignee: Axcelis Technologies, Inc.
    Inventors: Bo H. Vanderberg, William F. DiVergilio
  • Patent number: 8124947
    Abstract: A system and method are provided for implanting ions into a workpiece in a plurality of operating ranges. A desired dosage of ions is provided, and a spot ion beam is formed from an ion source and mass analyzed by a mass analyzer. Ions are implanted into the workpiece in one of a first mode and a second mode based on the desired dosage of ions, where in the first mode, the ion beam is scanned by a beam scanning system positioned downstream of the mass analyzer and parallelized by a parallelizer positioned downstream of the beam scanning system. In the first mode, the workpiece is scanned through the scanned ion beam in at least one dimension by a workpiece scanning system. In the second mode, the ion beam is passed through the beam scanning system and parallelizer un-scanned, and the workpiece is two-dimensionally scanned through the spot ion beam.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: February 28, 2012
    Assignee: Axcelis Technologies Inc.
    Inventors: Manny Sieradzki, Patrick Splinter, Bo H Vanderberg
  • Patent number: 7897944
    Abstract: An ion beam angle detection apparatus, comprising a linear drive assembly fixedly attached to a moveable profiler assembly, wherein the profiler assembly comprises, a profiler having a profiler aperture formed within a profiler top plate and a profiler sensor assembly, a moveable angle mask assembly comprising a moveable angle mask with a mask aperture, wherein the angle mask assembly is non-fixedly attached to the profiler assembly, the mask aperture is movable relative to the profiler aperture by energizing an mask linear drive fixedly attached to the profiler assembly and the profiler aperture is movable through a length greater than the elongated length of the ion beam.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: March 1, 2011
    Assignee: Axcelis Technologies, Inc.
    Inventors: Robert J. Mitchell, Bo H. Vanderberg