Patents by Inventor Bo Lincoln

Bo Lincoln has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11929866
    Abstract: Methods performed by a wireless device operating in a dormant mode comprise performing a measurement on each of a plurality of resources from a predetermined set of resources or demodulating and decoding information from each of a plurality of resources from a predetermined set of resources, such as a set of beams. The methods further include evaluating the measurement or the demodulated and decoded information for each of the plurality of resources against a predetermined criterion, and then discontinuing the performing and evaluating of measurements, or discontinuing the demodulating and decoding and evaluation of information, in response to determining that the predetermined criterion is met, such that one or more resources in the predetermined set of resources are neither measured nor demodulated and decoded. The methods further comprise deactivating receiver circuitry, further in response to determining that the predetermined criterion is met.
    Type: Grant
    Filed: February 21, 2023
    Date of Patent: March 12, 2024
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Bo Lincoln, Robert Baldemair, Martin Hessler, Eleftherios Karipidis, Torgny Palenius, Eliane Semaan
  • Patent number: 11899102
    Abstract: The disclosure relates to an autonomous moving object comprising: a radar sensor configured to scan a volume in front of the object, and a radar signal processor configured to: acquire a sequence of radar responses, each radar response of the sequence being acquired at a different position of the autonomous moving object, and perform synthetic aperture radar processing of at least parts of the acquired sequence of radar responses to obtain a synthetic aperture radar image representing response amplitude as a function of at least distance and angle with respect to the radar sensor, the autonomous moving object further comprising: a controller configured to detect presence of a potential obstacle within a pre-defined sub-volume in front of the autonomous moving object by analyzing the synthetic aperture radar image and, in response to detecting presence of a potential obstacle, output a control command configured to cause a changed movement of the autonomous moving object.
    Type: Grant
    Filed: July 4, 2019
    Date of Patent: February 13, 2024
    Assignee: Acconeer AB
    Inventors: Bo Lincoln, Peter Almers, Rikard Nelander
  • Patent number: 11757552
    Abstract: Performing a superposed transmission in a wireless communications network. The superposed transmission includes a first signal intended for a first wireless device and a second signal intended for a second wireless device that are superposed and transmitted simultaneously by the network node on the same transmission resources. A first ratio and a second ratio of the total transmission power available for the superposed transmission are determined. The first ratio is to be used for the first signal and the second ratio is to be used for the second signal. Information indicating the first and/or second ratio is transmitted to at least the first wireless device and the superposed transmission to the first and second wireless device is performed simultaneously on the same transmission resources by transmitting the first signal using a transmission power according to the first ratio and the second signal using a transmission power according to the second ratio.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: September 12, 2023
    Assignee: Telefonaktiebolaget LM Ericsson (Publ)
    Inventors: Shiwei Gao, Mattias Frenne, Robert Mark Harrison, Bo Lincoln, Siva Muruganathan, Zhang Zhang
  • Publication number: 20230261926
    Abstract: Methods performed by a wireless device operating in a dormant mode comprise performing a measurement on each of a plurality of resources from a predetermined set of resources or demodulating and decoding information from each of a plurality of resources from a predetermined set of resources, such as a set of beams. The methods further include evaluating the measurement or the demodulated and decoded information for each of the plurality of resources against a predetermined criterion, and then discontinuing the performing and evaluating of measurements, or discontinuing the demodulating and decoding and evaluation of information, in response to determining that the predetermined criterion is met, such that one or more resources in the predetermined set of resources are neither measured nor demodulated and decoded. The methods further comprise deactivating receiver circuitry, further in response to determining that the predetermined criterion is met.
    Type: Application
    Filed: February 21, 2023
    Publication date: August 17, 2023
    Inventors: Bo Lincoln, Robert Baldemair, Martin Hessler, Eleftherios Karipidis, Torgny Palenius, Eliane Semaan
  • Patent number: 11632284
    Abstract: Methods performed by a wireless device operating in a dormant mode comprise performing a measurement on each of a plurality of resources from a predetermined set of resources or demodulating and decoding information from each of a plurality of resources from a predetermined set of resources, such as a set of beams. The methods further include evaluating the measurement or the demodulated and decoded information for each of the plurality of resources against a predetermined criterion, and then discontinuing the performing and evaluating of measurements, or discontinuing the demodulating and decoding and evaluation of information, in response to determining that the predetermined criterion is met, such that one or more resources in the predetermined set of resources are neither measured nor demodulated and decoded. The methods further comprise deactivating receiver circuitry, further in response to determining that the predetermined criterion is met.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: April 18, 2023
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Bo Lincoln, Robert Baldemair, Martin Hessler, Eleftherios Karipidis, Torgny Palenius, Eliane Semaan
  • Publication number: 20230109947
    Abstract: Methods and apparatus in a fifth-generation wireless communications network, including an example method, in a wireless device, that includes determining a reporting quality threshold for a parameter related to channel state information (CSI); performing a measurement for each of a plurality of beams from a first predetermined set of beams for evaluation; evaluating the measurement for each of the plurality of beams against the reporting quality threshold; discontinuing the performing and evaluating of measurements in response to determining that the reporting quality threshold is met for one of the beams, such that one or more beams in the first predetermined set of beams are not measured and evaluated; and reporting, to the wireless communications network, CSI for the one of the beams.
    Type: Application
    Filed: June 8, 2022
    Publication date: April 13, 2023
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Bo Lincoln, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Johan Nilsson, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter von Wrycza, Thomas Walldeen, Anders Wallén, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Patent number: 11444822
    Abstract: In an aspect, a wireless device with a plurality of transmitter chains that can be selectively used to transmit a beam-formed signal determines a targeted receive power for the beam-formed signal, with respect to a target receiving device. The wireless device selects a number of the plurality of transmitter chains for forming the beam-formed signal, based on the targeted receive power and based on an estimated power consumption for each of the plurality of transmitter chains. The selection is performed so as to minimize a total power consumption, given the estimated power consumptions. The wireless device transmits a beam-formed signal, using the selected number of the plurality of transmitter chains.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: September 13, 2022
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Torgny Palenius, Robert Baldemair, Martin Hessler, Eleftherios Karipidis, Bo Lincoln, Eliane Semaan
  • Patent number: 11381445
    Abstract: Methods and apparatus in a fifth-generation wireless communications network, including an example method, in a wireless device, that includes determining a reporting quality threshold for a parameter related to channel state information (CSI); performing a measurement for each of a plurality of beams from a first predetermined set of beams for evaluation; evaluating the measurement for each of the plurality of beams against the reporting quality threshold; discontinuing the performing and evaluating of measurements in response to determining that the reporting quality threshold is met for one of the beams, such that one or more beams in the first predetermined set of beams are not measured and evaluated; and reporting, to the wireless communications network, CSI for the one of the beams.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: July 5, 2022
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Bo Lincoln, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Johan Nilsson, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Anders Wallén, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Publication number: 20220091257
    Abstract: An autonomous moving object comprising a radar sensor is provided. The radar sensor is configured to, during movement, acquire data sets representing reflections from surface portions located within a distance range, and, at least at a sequence of occasions, illuminate a surface region and acquire a data set representing, for each of a set of distances within said distance range, an amplitude and a phase of reflected radar signals received from surface portions located at said distance. Said surface regions comprise common sub-region illuminated at each of said occasions. A radar signal processor is configured to receive the data sets acquired at each of said sequence of occasions. The received data sets form a collection of data sets, wherein each data set of said collection comprises a data subset pertaining to said common sub-region. A surface classifier processor is configured to output a classification of a surface type of the surface based on said collection of data subsets.
    Type: Application
    Filed: January 24, 2020
    Publication date: March 24, 2022
    Applicant: Acconeer AB
    Inventors: Peter Almers, Bo Lincoln, Rikard Nelander, David Montgomery, Gaston Holmén
  • Patent number: 11265916
    Abstract: Systems and methods are disclosed herein that relate to the use of a Device-to-Device (D2D) sidelink, e.g., in a licensed spectrum, to assist with clear channel assessment in an unlicensed spectrum. In doing so, the hidden node problem and/or the exposed node problem can be mitigated. In some embodiments, a method of operation of a wireless device in a cellular communications network comprises performing a sidelink-assisted clear channel assessment (SLA-CCA) procedure to determine whether to transmit on an unlicensed channel. The SLA-CCA procedure is a Clear Channel Assessment (CCA) procedure that is assisted by information received by the wireless device from one or more other wireless devices over a D2D sidelink in a licensed spectrum. The method further comprises, upon determining to transmit on the unlicensed channel as a result of performing the SLA-CCA procedure, transmitting a transmission on the unlicensed channel.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: March 1, 2022
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Gabor Fodor, Håkan Björkegren, Fredrik Gunnarsson, Jonas Kronander, Bo Lincoln, Anders Wallén
  • Patent number: 11233553
    Abstract: A method for estimating Multiple Input Multiple Output, MIMO, channel state information for a radio link between a first radio node including a number N, N?2, of receiving antenna ports and a second radio node including a number M, M?2, of transmitting antenna ports. The method includes obtaining partial channel state information from a reference signal transmitted by a number X, 1?X<M, of said transmitting antenna ports and received by all of said receiving antenna ports, said partial channel state information providing a measure for the N×X propagation channels between all of said receiving antenna ports and said transmitting antenna ports. Also disclosed are corresponding devices and computer programs. Also disclosed is a method for controlling transmission based on estimated channel state information.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: January 25, 2022
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Anqi He, Virgile Garcia, Niklas Jaldén, Bo Lincoln, Hai Wang
  • Publication number: 20210409256
    Abstract: Methods performed by a wireless device operating in a dormant mode comprise performing a measurement on each of a plurality of resources from a predetermined set of resources or demodulating and decoding information from each of a plurality of resources from a predetermined set of resources, such as a set of beams. The methods further include evaluating the measurement or the demodulated and decoded information for each of the plurality of resources against a predetermined criterion, and then discontinuing the performing and evaluating of measurements, or discontinuing the demodulating and decoding and evaluation of information, in response to determining that the predetermined criterion is met, such that one or more resources in the predetermined set of resources are neither measured nor demodulated and decoded. The methods further comprise deactivating receiver circuitry, further in response to determining that the predetermined criterion is met.
    Type: Application
    Filed: May 12, 2021
    Publication date: December 30, 2021
    Inventors: Bo Lincoln, Robert Baldemair, Martin Hessler, Eleftherios Karipidis, Torgny Palenius, Eliane Semaan
  • Patent number: 11165547
    Abstract: A reciprocity-based precoding algorithm is provided that accommodates for the specific type of uncertainty arising from the delay in channel estimation as a function of the velocity of moving wireless communication devices (103a-c). Account is taken of time delay from reference symbols previous sounding times as well as the velocity of the wireless communication devices (103a-c) thereby providing an effective precoding scheme for beamforming.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: November 2, 2021
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Mohammadreza Malek-Mohammadi, Bo Lincoln
  • Publication number: 20210302569
    Abstract: The disclosure relates to an autonomous moving object comprising: a radar sensor configured to scan a volume in front of the object, and a radar signal processor configured to: acquire a sequence of radar responses, each radar response of the sequence being acquired at a different position (P) of the autonomous moving object, and perform synthetic aperture radar processing of at least parts of the acquired sequence of radar responses to obtain a synthetic aperture radar image representing response amplitude as a function of at least distance and angle with respect to the radar sensor, the autonomous moving object further comprising: a controller configured to detect presence of a potential obstacle within a pre-defined sub-volume in front of the autonomous moving object by analyzing the synthetic aperture radar image and, in response to detecting presence of a potential obstacle, output a control command configured to cause a changed movement of the autonomous moving object.
    Type: Application
    Filed: July 4, 2019
    Publication date: September 30, 2021
    Inventors: Bo Lincoln, Peter Almers, Rikard Nelander
  • Patent number: 11038742
    Abstract: Methods performed by a wireless device operating in a dormant mode comprise performing a measurement on each of a plurality of resources from a predetermined set of resources or demodulating and decoding information from each of a plurality of resources from a predetermined set of resources, such as a set of beams. The methods further include evaluating the measurement or the demodulated and decoded information for each of the plurality of resources against a predetermined criterion, and then discontinuing the performing and evaluating of measurements, or discontinuing the demodulating and decoding and evaluation of information, in response to determining that the predetermined criterion is met, such that one or more resources in the predetermined set of resources are neither measured nor demodulated and decoded. The methods further comprise deactivating receiver circuitry, further in response to determining that the predetermined criterion is met.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: June 15, 2021
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Bo Lincoln, Robert Baldemair, Martin Hessler, Eleftherios Karipidis, Torgny Palenius, Eliane Semaan
  • Patent number: 10880059
    Abstract: According to an aspect, a radio access network node supports the transmission of multi-user superposition transmissions, where multi-user superposition transmission comprises transmitting, in each of a plurality of time-frequency resource elements, a modulation symbol intended for a first UE and a modulation symbol intended for a second UE, using the same antennas and the same antenna precoding. The radio access network node receives multiple CSI reports from the first UE for a first reporting instance. One or more of the received multiple CSI reports correspond to one or more respective multi-user superposition transmission states. The radio access network node also determines whether to use multi-user superposition transmission or an orthogonal multiple access transmission for scheduling the first UE in a first scheduling interval, based on the received multiple CSI reports.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: December 29, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Siva Muruganathan, Mattias Frenne, Shiwei Gao, Robert Mark Harrison, Bo Lincoln, Zhang Zhang
  • Publication number: 20200389216
    Abstract: A method for estimating Multiple Input Multiple Output, MIMO, channel state information for a radio link between a first radio node including a number N, N?2, of receiving antenna ports and a second radio node including a number M, M?2, of transmitting antenna ports. The method comprises the steps of includes obtaining partial channel state information from a reference signal transmitted by a number X, 1?X<M, of said transmitting antenna ports and received by all of said receiving antenna ports, said partial channel state information providing a measure for the N×X propagation channels between all of said receiving antenna ports and said transmitting antenna ports. Also disclosed are corresponding devices and computer programs. Also disclosed is a method for controlling transmission based on estimated channel state information.
    Type: Application
    Filed: February 6, 2018
    Publication date: December 10, 2020
    Inventors: Anqi HE, Virgile GARCIA, Niklas JALDÉN, Bo LINCOLN, Hai WANG
  • Publication number: 20200358646
    Abstract: Methods performed by a wireless device operating in a dormant mode comprise performing a measurement on each of a plurality of resources from a predetermined set of resources or demodulating and decoding information from each of a plurality of resources from a predetermined set of resources, such as a set of beams. The methods further include evaluating the measurement or the demodulated and decoded information for each of the plurality of resources against a predetermined criterion, and then discontinuing the performing and evaluating of measurements, or discontinuing the demodulating and decoding and evaluation of information, in response to determining that the predetermined criterion is met, such that one or more resources in the predetermined set of resources are neither measured nor demodulated and decoded. The methods further comprise deactivating receiver circuitry, further in response to determining that the predetermined criterion is met.
    Type: Application
    Filed: July 8, 2020
    Publication date: November 12, 2020
    Inventors: Bo Lincoln, Robert Baldemair, Martin Hessler, Eleftherios Karipidis, Torgny Palenius, Eliane Semaan
  • Publication number: 20200328833
    Abstract: Performing a superposed transmission in a wireless communications network. The superposed transmission includes a first signal intended for a first wireless device and a second signal intended for a second wireless device that are superposed and transmitted simultaneously by the network node on the same transmission resources. A first ratio and a second ratio of the total transmission power available for the superposed transmission are determined. The first ratio is to be used for the first signal and the second ratio is to be used for the second signal. Information indicating the first and/or second ratio is transmitted to at least the first wireless device and the superposed transmission to the first and second wireless device is performed simultaneously on the same transmission resources by transmitting the first signal using a transmission power according to the first ratio and the second signal using a transmission power according to the second ratio.
    Type: Application
    Filed: June 15, 2020
    Publication date: October 15, 2020
    Inventors: Shiwei GAO, Mattias FRENNE, Robert Mark HARRISON, Bo LINCOLN, Siva MURUGANATHAN, Zhang ZHANG
  • Publication number: 20200304362
    Abstract: In an aspect, a wireless device with a plurality of transmitter chains that can be selectively used to transmit a beam-formed signal determines a targeted receive power for the beam-formed signal, with respect to a target receiving device. The wireless device selects a number of the plurality of transmitter chains for forming the beam-formed signal, based on the targeted receive power and based on an estimated power consumption for each of the plurality of transmitter chains. The selection is performed so as to minimize a total power consumption, given the estimated power consumptions. The wireless device transmits a beam-formed signal, using the selected number of the plurality of transmitter chains.
    Type: Application
    Filed: June 12, 2020
    Publication date: September 24, 2020
    Inventors: Torgny Palenius, Robert Baldemair, Martin Hessler, Eleftherios Karipidis, Bo Lincoln, Eliane Semaan