Patents by Inventor Bowen Cheng

Bowen Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240126722
    Abstract: A method and system for deduplication caching using an unreliable edge resource include acquiring a total storage capacity of all edge servers, searching for candidate cache files by a similarity-based hierarchical clustering (SHC) method, and acquiring file clusters of all the candidate cache files after clustering, where the candidate cache files each include a deduplicated data chunk, and based on the file clusters and an reliability of all of the edge servers, selecting, by a heuristic algorithm, a file cluster from the file clusters to cache to the edge server until a size of cached content reaches the total storage capacity. The present disclosure makes a trade-off between file availability and space efficiency, thereby effectively improving the cache hit rate in the limited edge caching space.
    Type: Application
    Filed: April 24, 2023
    Publication date: April 18, 2024
    Applicant: NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY
    Inventors: Lailong LUO, Geyao CHENG, Deke GUO, Junxu XIA, Bowen SUN
  • Patent number: 11781280
    Abstract: A subgrade with local deep excavation and backfilling structure and a rapid construction method thereof are provided. Supporting cast-in-place piles are laid at positions where an underground pipe gallery is located in a subgrade structure, and soil there between are longitudinally excavated to form a line-shaped foundation pit. A bottom of the line-shaped deep foundation pit is reinforced to support the underground pipe gallery, and lateral peripheral regions and top peripheral regions of the underground pipe gallery are backfilled with block geobag reinforced fillers. Geogrids are placed on the top of the underground pipe gallery, then backfilling compaction and reinforcing are performed, and the geogrids are fixedly assembled with anchor bolts. The construction method is simple and easy. By using compacted block geobag reinforced fillers and cement solidified slurry, an overall quality of the subgrade structure after backfilling can be ensured, and construction period and cost can be greatly reduced.
    Type: Grant
    Filed: April 7, 2022
    Date of Patent: October 10, 2023
    Assignee: Tongji University
    Inventors: Xilin Lyu, Zhiwei Xie, Bowen Cheng
  • Publication number: 20230203775
    Abstract: A subgrade with local deep excavation and backfilling structure and a rapid construction method thereof are provided. Supporting cast-in-place piles are laid at positions where an underground pipe gallery is located in a subgrade structure, and soil there between are longitudinally excavated to form a line-shaped foundation pit. A bottom of the line-shaped deep foundation pit is reinforced to support the underground pipe gallery, and lateral peripheral regions and top peripheral regions of the underground pipe gallery are backfilled with block geobag reinforced fillers. Geogrids are placed on the top of the underground pipe gallery, then backfilling compaction and reinforcing are performed, and the geogrids are fixedly assembled with anchor bolts. The construction method is simple and easy. By using compacted block geobag reinforced fillers and cement solidified slurry, an overall quality of the subgrade structure after backfilling can be ensured, and construction period and cost can be greatly reduced.
    Type: Application
    Filed: April 7, 2022
    Publication date: June 29, 2023
    Inventors: XILIN LYU, ZHIWEI XIE, BOWEN CHENG
  • Publication number: 20230019250
    Abstract: The present disclosure generally relates to methods and user interfaces for authentication, including providing authentication at a computer system in accordance with some embodiments.
    Type: Application
    Filed: April 28, 2022
    Publication date: January 19, 2023
    Inventors: SungChang LEE, Bowen CHENG, Yue HANG, Weiqi PAN, Yue SHEN, Xiaoguang YANG, Xiaofeng YU, Feng ZHANG, Liang ZHAO, Qiuji ZHAO, Wendong ZHONG
  • Publication number: 20200282362
    Abstract: The present invention relates to the technical field of filtering materials and provides a reverse osmosis membrane support material. The support material is obtained by hot pressing treatment of a surface layer, a middle layer and a bottom layer which are sequentially disposed from top to bottom. The surface layer and the bottom layer are each a spunbond non-woven fabric layer made of thermoplastic polymer spunbonded fibers, and the middle layer is a polymer nanofiber membrane. In accordance with the invention, the comprehensive mechanical strength of the reverse osmosis membrane support material is improved, and the overall anti-leakage performance is enhanced. A spunbond technology and a nanofiber preparation technology are combined organically, and the method is simple and controllable. The support material can be produced in batches.
    Type: Application
    Filed: November 12, 2019
    Publication date: September 10, 2020
    Inventors: Xupin ZHUANG, Bowen CHENG, Weimin KANG, Gaokai ZHANG, Xianlin XU, Lei SHI
  • Patent number: 10451482
    Abstract: A system is configured to determine a color distribution of an object moving along a flow direction relative to a spatial filter. The light emanating from the object is time modulated according to the mask features of the spatial filter. First and second detectors are arranged to sense the modulated light. The first detector senses light having a first wavelength spectrum and generates a first electrical output signal in response to the sensed light. The second detector light senses light having a second wavelength spectrum and generates a second electrical output signal in response to the sensed light. Signals from the first and second detectors include information about color distribution of the object.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: October 22, 2019
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Joerg Martini, Marshall W. Bern, Noble M. Johnson, Peter Kiesel, Doron Kletter, Bowen Cheng, Michael I. Recht
  • Patent number: 10260858
    Abstract: Spatially modulated light emanating from an object moving along a flow path is used to determine various object characteristics including object length along the flow direction. Light emanating from at least one object moving along in a flow path along a flow direction of a spatial filter is sensed. The intensity of the sensed light is time modulated according to features of the spatial filter. A time varying electrical signal is generated which includes a plurality of pulses in response to the sensed light. Pulse widths of at least some of the pulses are measured at a fraction of a local extremum of the pulses. The length of the object along the flow direction is determined based on the measured pulse widths.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: April 16, 2019
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Joerg Martini, Marshall W. Bern, Noble M. Johnson, Peter Kiesel, Doron Kletter, Bowen Cheng, Michael I. Recht
  • Patent number: 10164146
    Abstract: A light emitting device includes a p-side heterostructure having a short period superlattice (SPSL) formed of alternating layers of AlxhighGa1-xhighN doped with a p-type dopant and AlxlowGa1-xlowN doped with the p-type dopant, where xlow?xhigh?0.9. Each layer of the SPSL has a thickness of less than or equal to about six bi-layers of AlGaN.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: December 25, 2018
    Assignee: Palo Alto Research Center Incorporated
    Inventors: John E. Northrup, Bowen Cheng, Christopher L. Chua, Thomas Wunderer, Noble M. Johnson, Zhihong Yang
  • Publication number: 20180245908
    Abstract: Spatially modulated light emanating from an object moving along a flow path is used to determine various object characteristics including object length along the flow direction. Light emanating from at least one object moving along in a flow path along a flow direction of a spatial filter is sensed. The intensity of the sensed light is time modulated according to features of the spatial filter. A time varying electrical signal is generated which includes a plurality of pulses in response to the sensed light. Pulse widths of at least some of the pulses are measured at a fraction of a local extremum of the pulses. The length of the object along the flow direction is determined based on the measured pulse widths.
    Type: Application
    Filed: April 23, 2018
    Publication date: August 30, 2018
    Inventors: Joerg Martini, Marshall W. Bern, Noble M. Johnson, Peter Kiesel, Doron Kletter, Bowen Cheng, Michael I. Recht
  • Patent number: 9952033
    Abstract: Spatially modulated light emanating from an object moving along a flow path is used to determine various object characteristics including object length along the flow direction. Light emanating from at least one object moving along in a flow path along a flow direction of a spatial filter is sensed. The intensity of the sensed light is time modulated according to features of the spatial filter. A time varying electrical signal is generated which includes a plurality of pulses in response to the sensed light. Pulse widths of at least some of the pulses are measured at a fraction of a local extremum of the pulses. The length of the object along the flow direction is determined based on the measured pulse widths.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: April 24, 2018
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Joerg Martini, Marshall W. Bern, Noble M. Johnson, Peter Kiesel, Doron Kletter, Bowen Cheng, Michael I. Recht
  • Patent number: 9528925
    Abstract: Approaches for determining object position in a flow path are disclosed. A system includes a spatial filter having a length disposed along a longitudinal axis of the flow path and a width along a lateral axis of the flow path. The spatial filter has mask features configured to modulate light. Light emanating from objects moving along the flow path is detected. The detected light has a component along a detection axis that makes a non-zero angle with respect to the longitudinal and lateral axes. An electrical output signal that includes information about the trajectory depth of the object is generated in response to the detected light.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: December 27, 2016
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Doron Kletter, Joerg Martini, Marshall W. Bern, Noble M. Johnson, Peter Kiesel, Bowen Cheng, Michael I. Recht
  • Publication number: 20160336481
    Abstract: A light emitting device includes a p-side heterostructure having a short period superlattice (SPSL) formed of alternating layers of AlxhighGa1-xhighN doped with a p-type dopant and AlxlowGa1-xlowN doped with the p-type dopant, where xlow?xhigh?0.9. Each layer of the SPSL has a thickness of less than or equal to about six bi-layers of AlGaN.
    Type: Application
    Filed: July 13, 2016
    Publication date: November 17, 2016
    Inventors: John E. Northrup, Bowen Cheng, Christopher L. Chua, Thomas Wunderer, Noble M. Johnson, Zhihong Yang
  • Patent number: 9401452
    Abstract: A light emitting device includes a p-side heterostructure having a short period superlattice (SPSL) formed of alternating layers of AlxhighGa1-xhighN doped with a p-type dopant and AlxlowGa1-xlowN doped with the p-type dopant, where xlow?xhigh?0.9. Each layer of the SPSL has a thickness of less than or equal to about six bi-layers of AlGaN.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: July 26, 2016
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: John E. Northrup, Bowen Cheng, Christopher L. Chua, Thomas Wunderer, Noble M. Johnson, Zhihong Yang
  • Patent number: 9219189
    Abstract: A light emitting device includes a p-side heterostructure, an n-side heterostructure, an active region disposed between the p-side heterostructure and the n-side heterostructure. An electron blocking layer (EBL) disposed between the p-side heterostructure and the active region comprises an aluminum containing group-III-nitride alloy. An aluminum composition of the EBL decreases as a function of distance along a [0001] direction from the active region towards the p-side heterostructure over a majority of the thickness of the EBL.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: December 22, 2015
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: John E. Northrup, Bowen Cheng, Christopher L. Chua, Thomas Wunderer, Noble M. Johnson, Zhihong Yang, Suk Choi
  • Patent number: 9207066
    Abstract: A device includes a spatial filter arranged in a Cartesian coordinate system having orthogonal x, y, and z axes. The spatial filter has mask features that are more light transmissive and mask features that are less light transmissive. The mask features are arranged along the x-axis in the flow direction of a flow path. A detector is positioned to detect light emanating from at least one object in the flow path, the object having a width along the y-axis, a thickness along the z-axis, and a length along the x-axis. Light emanating from the object is time modulated according to the mask features as the object moves along the flow path. The detector is configured to generate a time-varying electrical signal in response to the detected light that includes information about the width or thickness of the object.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: December 8, 2015
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Joerg Martini, Marshall W. Bern, Noble M. Johnson, Peter Kiesel, Doron Kletter, Bowen Cheng, Michael I. Recht
  • Patent number: 9210785
    Abstract: An ionic wind engine unit for cooling semiconductor circuit assemblies includes a curved micro-spring and an associated electrode that are maintained apart at an appropriate gap distance such that, when subjected to a sufficiently high voltage potential (i.e., as determined by Peek's Law), current crowding at the spring's tip portion creates an electrical field that sufficiently ionizes neutral molecules in a portion of the air-filled region surrounding the tip portion to generate a micro-plasma event. In one engine type the electrode is a metal pad, and in a second engine type the electrode is a second micro-spring. Ionic wind cooling is generated, for example, between an IC die and a base substrate in a flip-chip arrangement, by controlling multiple engines disposed on the facing surfaces to produce an air current in the air gap region separating the IC device and base substrate.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: December 8, 2015
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Bowen Cheng, Dirk DeBruyker, Eugene M. Chow
  • Publication number: 20150280056
    Abstract: A light emitting device includes a p-side heterostructure, an n-side heterostructure, an active region disposed between the p-side heterostructure and the n-side heterostructure. An electron blocking layer (EBL) disposed between the p-side heterostructure and the active region comprises an aluminum containing group-III-nitride alloy. An aluminum composition of the EBL decreases as a function of distance along a [0001] direction from the active region towards the p-side heterostructure over a majority of the thickness of the EBL.
    Type: Application
    Filed: September 14, 2012
    Publication date: October 1, 2015
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: John E. Northrup, Bowen Cheng, Christopher L. Chua, Thomas Wunderer, Noble M. Johnson, Zhihong Yang, Suk Choi
  • Publication number: 20150276486
    Abstract: A system is configured to determine a color distribution of an object moving along a flow direction relative to a spatial filter. The light emanating from the object is time modulated according to the mask features of the spatial filter. First and second detectors are arranged to sense the modulated light. The first detector senses light having a first wavelength spectrum and generates a first electrical output signal in response to the sensed light. The second detector light senses light having a second wavelength spectrum and generates a second electrical output signal in response to the sensed light. Signals from the first and second detectors include information about color distribution of the object.
    Type: Application
    Filed: February 14, 2014
    Publication date: October 1, 2015
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Joerg Martini, Marshall W. Bern, Noble M. Johnson, Peter Kiesel, Doron Kletter, Bowen Cheng, Michael I. Recht
  • Publication number: 20150276387
    Abstract: Approaches for determining object position in a flow path are disclosed. A system includes a spatial filter having a length disposed along a longitudinal axis of the flow path and a width along a lateral axis of the flow path. The spatial filter has mask features configured to modulate light. Light emanating from objects moving along the flow path is detected. The detected light has a component along a detection axis that makes a non-zero angle with respect to the longitudinal and lateral axes. An electrical output signal that includes information about the trajectory depth of the object is generated in response to the detected light.
    Type: Application
    Filed: February 14, 2014
    Publication date: October 1, 2015
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Doron Kletter, Joerg Martini, Marshall W. Bern, Noble M. Johnson, Peter Kiesel, Bowen Cheng, Michael I. Recht
  • Publication number: 20150233704
    Abstract: A device includes a spatial filter arranged in a Cartesian coordinate system having orthogonal x, y, and z axes. The spatial filter has mask features that are more light transmissive and mask features that are less light transmissive. The mask features are arranged along the x-axis in the flow direction of a flow path. A detector is positioned to detect light emanating from at least one object in the flow path, the object having a width along the y-axis, a thickness along the z-axis, and a length along the x-axis. Light emanating from the object is time modulated according to the mask features as the object moves along the flow path. The detector is configured to generate a time-varying electrical signal in response to the detected light that includes information about the width or thickness of the object.
    Type: Application
    Filed: February 14, 2014
    Publication date: August 20, 2015
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Joerg Martini, Marshall W. Bern, Noble M. Johnson, Peter Kiesel, Doron Kletter, Bowen Cheng, Michael I. Recht