Patents by Inventor Bob Shih-Wei Kuo

Bob Shih-Wei Kuo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10327076
    Abstract: A top port MEMS microphone package includes a substrate having a back volume expanding aperture therein. A MEMS microphone electronic component is mounted to the substrate directly above the back volume expanding aperture such that an aperture of the MEMS microphone electronic component is in fluid communication with the back volume expanding aperture. A lid having a lid cavity is mounted to the substrate. The back volume expanding aperture couples the aperture of the MEMS microphone electronic component to the lid cavity. By coupling the lid cavity to the aperture with the back volume expanding aperture, the resulting back volume is essentially the size of the entire top port MEMS microphone package. In this manner, the noise to signal ratio is minimized thus maximizing the sensitivity of the top port MEMS microphone package as well as the range of applications.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: June 18, 2019
    Assignee: AMKOR TECHNOLOGY, INC.
    Inventors: Ahmer Raza Syed, Bob Shih-Wei Kuo, Louis B. Troche, Jr.
  • Patent number: 9776855
    Abstract: A semiconductor device has a base substrate having a plurality of metal traces and a plurality of base vias. An opening is formed through the base substrate. At least one die is attached to the first surface of the substrate and positioned over the opening. A cover substrate has a plurality of metal traces. A cavity in the cover substrate forms side wall sections around the cavity. The cover substrate is attached to the base substrate so the at least one die is positioned in the interior of the cavity. Ground planes in the base substrate are coupled to ground planes in the cover substrate to form an RF shield around the at least one die.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: October 3, 2017
    Assignee: AMKOR TECHNOLOGY, INC.
    Inventors: David Bolognia, Bob Shih-Wei Kuo, Bud Troche
  • Patent number: 9758372
    Abstract: A method includes mounting a window substrate to a carrier tape. The window substrate has a window extending between an upper surface of the window substrate and a lower surface of the window substrate, the carrier tape sealing the window at the lower surface. Bond pads on an active surface of a MEMS die are flip chip mounted to terminals on the upper surface of the window substrate, a MEMS active area of the MEMS die being aligned with the window of the window substrate. A magnet is mounted to an inactive surface of the MEMS die.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: September 12, 2017
    Assignee: AMKOR TECHNOLOGY, INC.
    Inventors: Bob Shih-Wei Kuo, Shaun Michael Bowers, Russell Scott Shumway
  • Patent number: 9670445
    Abstract: A microfluidics sensor package includes a microfluidics sensor die having an active surface, bond pads on the active surface, and an active area on the active surface. A standoff pattern is formed on the active surface to extend to a precise height above the active surface. A lid is mounted to the standoff pattern by a lid adhesive. By using the standoff pattern to precisely space the lid above the active surface, a microfluidics cavity between the lid and the active surface is precisely created allowing for precise control of fluid flowing through the microfluidics cavity. By precisely controlling the flow of fluid through the microfluidics cavity, accurate results, e.g., of the laboratory functions performed on the fluid, are provided.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: June 6, 2017
    Assignee: Amkor Technology, Inc.
    Inventors: Bob Shih-Wei Kuo, Russell Scott Shumway
  • Publication number: 20160355395
    Abstract: A semiconductor device has a base substrate having a plurality of metal traces and a plurality of base vias. An opening is formed through the base substrate. At least one die is attached to the first surface of the substrate and positioned over the opening. A cover substrate has a plurality of metal traces. A cavity in the cover substrate forms side wall sections around the cavity. The cover substrate is attached to the base substrate so the at least one die is positioned in the interior of the cavity. Ground planes in the base substrate are coupled to ground planes in the cover substrate to form an RF shield around the at least one die.
    Type: Application
    Filed: June 6, 2016
    Publication date: December 8, 2016
    Inventors: David Bolognia, Bob Shih-Wei Kuo, Bud Troche
  • Patent number: 9420378
    Abstract: A top port MEMS microphone package includes a substrate having a back volume expanding aperture therein. A MEMS microphone electronic component is mounted to the substrate directly above the back volume expanding aperture such that an aperture of the MEMS microphone electronic component is in fluid communication with the back volume expanding aperture. A lid having a lid cavity is mounted to the substrate. The back volume expanding aperture couples the aperture of the MEMS microphone electronic component to the lid cavity. By coupling the lid cavity to the aperture with the back volume expanding aperture, the resulting back volume is essentially the size of the entire top port MEMS microphone package. In this manner, the noise to signal ratio is minimized thus maximizing the sensitivity of the top port MEMS microphone package as well as the range of applications.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: August 16, 2016
    Assignee: Amkor Technology, Inc.
    Inventors: Ahmer Raza Syed, Bob Shih-Wei Kuo, Louis B. Troche, Jr.
  • Patent number: 9359191
    Abstract: Methods and systems for a reversible top/bottom MEMS package may comprise a base substrate comprising metal traces, an opening through the base substrate, a die coupled to a first surface of the substrate and positioned over the opening, a frame member coupled to the first surface of the substrate wherein the die is positioned interior of the frame member, a cover substrate coupled to the frame member, and conductive plating on the frame member that electrically couples the base substrate to the cover substrate, wherein the conductive plating is exposed. The conductive plating may couple a ground plane in the base substrate to a ground plane in the cover substrate. The conductive plating may be exposed at an outer surface of the frame member and/or at an inner perimeter of the frame member. Conductive vias within the frame member may be coupled to the metal traces in the base substrate.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: June 7, 2016
    Assignee: Amkor Technology, Inc.
    Inventors: David Bolognia, Bob Shih-Wei Kuo, Bud Troche
  • Patent number: 9162871
    Abstract: A metal mesh lid MEMS package includes a substrate, a MEMS electronic component coupled to the substrate, and a metal mesh lid coupled to the substrate with a lid adhesive. The metal mesh lid includes a polymeric lid body having a top port formed therein and a metal mesh cap coupled to the lid body. The metal mesh cap covers the top port and serves as both a particulate filter and a continuous conductive shield for EMI/RF interferences. Further, the metal mesh cap provides a locking feature for the lid adhesive to maximize the attach strength of the metal mesh lid to the substrate.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: October 20, 2015
    Assignee: Amkor Technology, Inc.
    Inventors: Bob Shih-Wei Kuo, Russell Shumway, Louis B. Troche, Jr.
  • Publication number: 20150191346
    Abstract: Methods and systems for a reversible top/bottom MEMS package may comprise a base substrate comprising metal traces, an opening through the base substrate, a die coupled to a first surface of the substrate and positioned over the opening, a frame member coupled to the first surface of the substrate wherein the die is positioned interior of the frame member, a cover substrate coupled to the frame member, and conductive plating on the frame member that electrically couples the base substrate to the cover substrate, wherein the conductive plating is exposed. The conductive plating may couple a ground plane in the base substrate to a ground plane in the cover substrate. The conductive plating may be exposed at an outer surface of the frame member and/or at an inner perimeter of the frame member. Conductive vias within the frame member may be coupled to the metal traces in the base substrate.
    Type: Application
    Filed: March 17, 2015
    Publication date: July 9, 2015
    Inventors: David Bolognia, Bob Shih-Wei Kuo, Bud Troche
  • Patent number: 9013011
    Abstract: A staggered die MEMS package includes a substrate having a converter cavity formed therein. A converter electronic component is mounted within the converter cavity. Further, a MEMS electronic component is mounted to both the substrate and the converter electronic component in a staggered die arrangement. By staggering the MEMS electronic component directly on the converter electronic component instead of locating the MEMS electronic component in a side by side arrangement with the converter electronic component, the total package width of the staggered die MEMS package is minimized. Further, by locating the converter electronic component within the converter cavity and staggering the MEMS electronic component directly on the converter electronic component, the total package height, sometimes called Z-height, of the staggered die MEMS package is minimized.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: April 21, 2015
    Assignee: Amkor Technology, Inc.
    Inventors: Bob Shih-Wei Kuo, Brett Arnold Dunlap, Louis B. Troche, Jr., Ahmer Syed, Russell Shumway
  • Patent number: 8981537
    Abstract: A semiconductor device has a base substrate having a plurality of metal traces and a plurality of base vias. An opening is formed through the base substrate. At least one die is attached to the first surface of the substrate and positioned over the opening. A cover substrate has a plurality of metal traces. A cavity in the cover substrate forms side wall sections around the cavity. The cover substrate is attached to the base substrate so the at least one die is positioned in the interior of the cavity. Ground planes in the base substrate are coupled to ground planes in the cover substrate to form an RF shield around the at least one die.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: March 17, 2015
    Assignee: Amkor Technology, Inc.
    Inventors: David Bolognia, Bob Shih-Wei Kuo, Bud Troche
  • Patent number: 8866004
    Abstract: In accordance with the present invention, there is provided multiple embodiments of a concentrated photovoltaic (CPV) receiver package or module which includes a uniquely configured frame interconnect to facilitate the electrical connection of a receiver die of the CPV module to the conductive pattern of an underlying substrate thereof. In each embodiment of the present invention, a single piece of sheet metal is bent to form features to fit over the bus bar on the receiver die and bond pads of the conductive pattern on the substrate. Electrical connections can be made by soldering or conductive paste attach. Elevated, flat areas between connections facilitates vacuum pick up and automatic assembly and provides high potential insulation between connects.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: October 21, 2014
    Assignee: Amkor Technology, Inc.
    Inventors: Bob Shih-Wei Kuo, SungSun Park
  • Patent number: 8866002
    Abstract: In accordance with the present invention, there is provided multiple embodiments of a concentrated photovoltaic (CPV) receiver cell or die. In each embodiment of the present invention, the receiver die includes a multiplicity of through wafer vias or TWV's which are etched therethrough to effectively eliminate the bus bars on the top or front surface of the receiver die, connectors such as bus bars instead being effectively moved to the bottom or back surface of the receiver die. The movement of the connectors to the back surface of the receiver die provides the potential for a greater active surface area on the front surface for solar input.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: October 21, 2014
    Assignee: Amkor Technology, Inc.
    Inventors: Garry Pycroft, Bob-Shih Wei Kuo, Frederick Reed
  • Patent number: 8809677
    Abstract: In accordance with the present invention, there is provided multiple embodiments of a concentrated photovoltaic (CPV) module. In each embodiment of the present invention, the CPV module includes a light guide having a molded, cast or machined hollow funnel with a highly reflective internal surface for use in guiding focused solar rays to the active, front surface of the receiver die of the CPV module.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: August 19, 2014
    Assignee: Amkor Technology, Inc.
    Inventor: Bob Shih-Wei Kuo
  • Patent number: 8680656
    Abstract: In accordance with the present invention, there is provided multiple embodiments of a concentrated photovoltaic receiver package or module. In each embodiment of the present invention, the module comprises a leadframe including a first section and a second section disposed in spaced relation to each other. Mounted to the first section of the leadframe is a receiver die. The receiver die is electrically connected to both the first and second sections of the leadframe. In one embodiment of the present invention, the receiver die is electrically connected to the second section of the leadframe by a plurality of conductive wires. In another embodiment of the present invention, the receiver die is electrically connected to the second section of the leadframe by a conductive bonding material. Portions of the leadframe may optionally be covered by a molded body which can be used to define an alignment feature for a light concentrating device such as a light guide or optical rod.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: March 25, 2014
    Assignee: Amkor Technology, Inc.
    Inventors: Bob Shih Wei Kuo, John Merrill Nickelsen, Jr., Timothy L. Olson
  • Patent number: 8671565
    Abstract: A capture pad structure includes a lower dielectric layer, a capture pad embedded within the lower dielectric layer, the capture pad comprising a plurality of linear segments. To form the capture pad, a focused laser beam is moved linearly to form linear channels in the dielectric layer. These channels are filled with an electrically conductive material to form the capture pad.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: March 18, 2014
    Inventor: Bob Shih-Wei Kuo
  • Patent number: 8552517
    Abstract: In accordance with the present invention, there is provided a CPV module wherein a solder paste is used as an alternative to wire bonds or braided ribbon/mesh connectors to facilitate the electrical connectivity between the concentrated photovoltaic receiver cell or die of the CPV module and the conductive pattern of the underlying substrate thereof. In accordance with the present invention, the possibility of accidentally shorting the top of the receiver die with the other metal parts of the CPV module is avoided by molding at least the periphery of the receiver die with a mold body, and then dispensing or printing the conductive paste between the top of the receiver die and the substrate, the mold body defining a reservoir which facilities the flow of the conductive paste in a prescribed pattern.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: October 8, 2013
    Assignee: Amkor Technology, Inc.
    Inventors: Giuseppe Selli, Michael DeVita, Bob Shih-Wei Kuo
  • Patent number: 8536663
    Abstract: A metal mesh lid MEMS package includes a substrate, a MEMS electronic component coupled to the substrate, and a metal mesh lid coupled to the substrate with a lid adhesive. The metal mesh lid includes a polymeric lid body having a top port formed therein and a metal mesh cap coupled to the lid body. The metal mesh cap covers the top port and serves as both a particulate filter and a continuous conductive shield for EMI/RF interferences. Further, the metal mesh cap provides a locking feature for the lid adhesive to maximize the attach strength of the metal mesh lid to the substrate.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: September 17, 2013
    Assignee: Amkor Technology, Inc.
    Inventors: Bob Shih-Wei Kuo, Russell Shumway, Louis B. Troche, Jr.
  • Patent number: 8535961
    Abstract: A method of forming a light emitting diode (LED) package includes mounting a LED structure to a carrier, overmolding the LED structure in a package body, backgrinding the package body to expose the LED structure, removing the carrier, and forming a redistribution layer (RDL) buildup structure comprising a RDL circuit pattern coupled to a LED of the LED structure. The LED package is formed without a substrate in one embodiment. By forming the LED package without a substrate, the thickness of the LED package is minimized. Further, by forming the LED package without a substrate, heat removal from the LED is maximized as is electrical performance. Further still, by forming the LED package without a substrate, the fabrication cost of the LED package is minimized.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: September 17, 2013
    Assignee: Amkor Technology, Inc.
    Inventors: Bob Shih-Wei Kuo, Brett Arnold Dunlap, David Bolognia
  • Patent number: 8354747
    Abstract: A semiconductor device has a base substrate having a plurality of metal traces. A conductive polymer cover is provided having an opening. The conductive polymer cover forms a cavity when attached to the base substrate. At least one die is attached to an interior surface of the conductive polymer cover and positioned over the opening. The conductive polymer cover and the at least one die are electrically coupled to metal traces on the first surface of the base substrate.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: January 15, 2013
    Assignee: Amkor Technology, Inc
    Inventor: Bob Shih-Wei Kuo