Patents by Inventor Boguslaw A. Swedek

Boguslaw A. Swedek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180113440
    Abstract: A method to assist in identifying a spectral feature and a characteristic of the selected spectral feature to monitor during polishing includes polishing a test substrate and measuring a sequence of spectra of light reflected from a substrate while the substrate is being polished, where at least some of the spectra of the sequence differ due to material being removed during the polishing. The sequence of spectra are visually displayed as a contour plot.
    Type: Application
    Filed: December 20, 2017
    Publication date: April 26, 2018
    Inventors: Jeffrey Drue David, Harry Q. Lee, Dominic J. Benvegnu, Boguslaw A. Swedek
  • Publication number: 20180111251
    Abstract: An apparatus for chemical mechanical polishing includes a support for a polishing pad having a polishing surface, and an electromagnetic induction monitoring system to generate a magnetic field to monitor a substrate being polished by the polishing pad. The electromagnetic induction monitoring system includes a core and a coil wound around a portion of the core. The core includes a back portion, a center post extending from the back portion in a first direction normal to the polishing surface, and an annular rim extending from the back portion in parallel with the center post and surrounding and spaced apart from the center post by a gap. A width of the gap is less than a width of the center post, and a surface area of a top surface of the annular rim is at least two times greater than a surface area of a top surface of the center post.
    Type: Application
    Filed: October 5, 2017
    Publication date: April 26, 2018
    Inventors: Hassan G. Iravani, Kun Xu, Denis Ivanov, Shih-Haur Shen, Boguslaw A. Swedek
  • Publication number: 20180071886
    Abstract: A plurality of spectra reflected from one or more substrates at a plurality of different positions on the one or more substrates are represented in the form of a first matrix, and the first matrix is decomposed into products of at least two component matrixes of a first set of component matrixes. The dimensions of each of the at least two component matrixes is reduced to produce a second set of component matrixes containing the at least two matrixes with reduced dimensions.
    Type: Application
    Filed: November 20, 2017
    Publication date: March 15, 2018
    Applicant: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Boguslaw A. Swedek, Benjamin Cherian
  • Patent number: 9911664
    Abstract: A substrate for use in fabrication of an integrated circuit has a layer with a plurality of conductive interconnects. The substrate includes a semiconductor body, a dielectric layer disposed over the semiconductor body, a plurality of conductive lines of a conductive material disposed in first trenches in the dielectric layer to provide the conductive interconnects, and a closed conductive loop structure of the conductive material disposed in second trenches in the dielectric layer. The closed conductive loop is not electrically connected to any of the conductive lines.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: March 6, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Wei Lu, Zhihong Wang, Wen-Chiang Tu, Zhefu Wang, Hassan G. Iravani, Boguslaw A. Swedek, Fred C. Redeker, William H. McClintock
  • Patent number: 9886026
    Abstract: In one aspect, a method of polishing includes polishing a substrate, and receiving an identification of a selected spectral feature and a characteristic of the selected spectral feature to monitor during polishing. The method includes measuring a sequence of spectra of light reflected from the substrate while the substrate is being polished, where at least some of the spectra of the sequence differ due to material being removed during the polishing. The method of polishing includes determining a value of a characteristic of the selected spectral feature for each of the spectra in the sequence of spectra to generate a sequence of values for the characteristic, fitting a function to the sequence of values, and determining either a polishing endpoint or an adjustment for a polishing rate based on the function.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: February 6, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Harry Q. Lee, Dominic J. Benvegnu, Boguslaw A. Swedek
  • Publication number: 20170365532
    Abstract: In fabrication of an integrated circuit having a layer with a plurality of conductive interconnects, a layer of a substrate is polished to provide the layer of the integrated circuit. The layer of the substrate includes conductive lines to provide the conductive interconnects. The layer of the substrate includes a closed conductive loop formed of a conductive material in a trench. A depth of the conductive material in the trench is monitored using an inductive monitoring system and a signal is generated. Monitoring includes generating a magnetic field that intermittently passes through the closed conductive loop. A sequence of values over time is extracted from the signal, the sequence of values representing the depth of the conductive material over time.
    Type: Application
    Filed: September 1, 2017
    Publication date: December 21, 2017
    Inventors: Wei Lu, Zhefu Wang, Zhihong Wang, Hassan G. Iravani, Dominic J. Benvegnu, Ingemar Carlsson, Boguslaw A. Swedek, Wen-Chiang Tu
  • Patent number: 9833874
    Abstract: A plurality of spectra reflected from one or more substrates at a plurality of different positions on the one or more substrates are represented in the form of a first matrix, and the first matrix is decomposed into products of at least two component matrixes of a first set of component matrixes. The dimensions of each of the at least two component matrixes is reduced to produce a second set of component matrixes containing the at least two matrixes with reduced dimensions.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: December 5, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Boguslaw A. Swedek, Benjamin Cherian
  • Patent number: 9799578
    Abstract: A method of polishing includes storing a predetermined location and a predetermined number as criteria for detecting an end point, polishing a substrate, measuring a sequence of current spectra of light reflected from the substrate while the substrate is being polished, identifying a plurality of peaks or valleys that persist with an evolving location through at least some of the sequence of current spectra, counting a number of peaks or valleys that were identified that pass the predetermined location as polishing progresses, and ceasing to polish the substrate when the number counted reaches the predetermined number.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: October 24, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Dominic J. Benvegnu, Boguslaw A. Swedek, David J. Lischka
  • Patent number: 9754846
    Abstract: In fabrication of an integrated circuit having a layer with a plurality of conductive interconnects, a layer of a substrate is polished to provide the layer of the integrated circuit. The layer of the substrate includes conductive lines to provide the conductive interconnects. The layer of the substrate includes a closed conductive loop formed of a conductive material in a trench. A depth of the conductive material in the trench is monitored using an inductive monitoring system and a signal is generated. Monitoring includes generating a magnetic field that intermittently passes through the closed conductive loop. A sequence of values over time is extracted from the signal, the sequence of values representing the depth of the conductive material over time.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: September 5, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Wei Lu, Zhefu Wang, Zhihong Wang, Hassan G. Iravani, Dominic J. Benvegnu, Ingemar Carlsson, Boguslaw A. Swedek, Wen-Chiang Tu
  • Publication number: 20170151647
    Abstract: A difference between a first expected required polish time for a first substrate and a second expected required polish time for a second substrate is determined using a first pre-polish thickness and a second pre-polish thickness measured at an in-line metrology station. A duration of an initial period is determined based on the difference between the first expected required polish time and the second expected required polish time. For the initial period at a beginning of a polishing operation, no pressure is applied to whichever of the first substrate and the second substrate has a lesser expected required polish time while simultaneously pressure is applied to whichever of the first substrate and the second substrate has a greater expected required polish time. After the initial period, pressure is applied to both the first substrate and the second substrate.
    Type: Application
    Filed: February 3, 2017
    Publication date: June 1, 2017
    Applicant: Applied Materials, Inc.
    Inventors: Alain Duboust, Wen-Chiang Tu, Shih-Haur Shen, Jimin Zhang, Ingemar Carlsson, Boguslaw A. Swedek, Zhihong Wang, Stephen Jew, David H. Mai, Huyen Tran
  • Publication number: 20170140525
    Abstract: A polishing system includes a polishing station including a platen to support a polishing pad, a support to hold a substrate, an in-line metrology station to measure the substrate before or after polishing of a surface of the substrate in the polishing station, and a controller. The in-line metrology station includes a color line-scan camera, a white light source, a frame supporting the light source and the camera, and a motor to cause relative motion between the camera and the support along a second axis perpendicular to the first axis to cause the light source and the camera to scan across the substrate. The controller is configured to receive a color data from the camera, to generate a 2-dimensional color image from the color data, and to control polishing at the polishing station based on the color image.
    Type: Application
    Filed: November 16, 2015
    Publication date: May 18, 2017
    Inventors: Dominic J. Benvegnu, Robert D. Tolles, Boguslaw A. Swedek, Abraham Ravid
  • Publication number: 20170125313
    Abstract: A method of detecting a polishing endpoint includes storing a plurality of library spectra, measuring a sequence of spectra from the substrate in-situ during polishing, and for each measured spectrum of the sequence of spectra, finding a best matching library spectrum from the plurality of library spectra to generate a sequence of best matching library spectra. Each library spectrum has a stored associated value representing a degree of progress through a polishing process, and the stored associated value for the best matching library spectrum is determined for each best matching library spectrum to generate a sequence of values representing a progression of polishing of the substrate. The sequence of values is compared to a target value, and a polishing endpoint is triggered when the sequence of values reaches the target value.
    Type: Application
    Filed: January 11, 2017
    Publication date: May 4, 2017
    Applicant: Applied Materials, Inc.
    Inventors: Dominic J. Benvegnu, Jeffrey Drue David, Boguslaw A. Swedek
  • Patent number: 9636797
    Abstract: Among other things, a method of controlling polishing during a polishing process is described. The method includes receiving a measurement of a thickness, thick(t), of a conductive layer of a substrate undergoing polishing from an in-situ monitoring system at a time t; receiving a measured temperature, T(t), associated with the conductive layer at the time t; calculating resistivity ?T of the conductive layer at the measured temperature T(t); adjusting the measurement of the thickness using the calculated resistivity ?T to generate an adjusted measured thickness; and detecting a polishing endpoint or an adjustment for a polishing parameter based on the adjusted measured thickness.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: May 2, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Kun Xu, Ingemar Carlsson, Boguslaw A. Swedek, Doyle E. Bennett, Shih-Haur Shen, Hassan G Iravani, Wen-Chiang Tu, Tzu-Yu Liu
  • Publication number: 20170113320
    Abstract: A plurality of spectra reflected from one or more substrates at a plurality of different positions on the one or more substrates are represented in the form of a first matrix, and the first matrix is decomposed into products of at least two component matrixes of a first set of component matrixes. The dimensions of each of the at least two component matrixes is reduced to produce a second set of component matrixes containing the at least two matrixes with reduced dimensions.
    Type: Application
    Filed: January 6, 2017
    Publication date: April 27, 2017
    Applicant: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Boguslaw A. Swedek, Benjamin Cherian
  • Publication number: 20170092551
    Abstract: A method of polishing includes storing a predetermined location and a predetermined number as criteria for detecting an end point, polishing a substrate, measuring a sequence of current spectra of light reflected from the substrate while the substrate is being polished, identifying a plurality of peaks or valleys that persist with an evolving location through at least some of the sequence of current spectra, counting a number of peaks or valleys that were identified that pass the predetermined location as polishing progresses, and ceasing to polish the substrate when the number counted reaches the predetermined number.
    Type: Application
    Filed: December 12, 2016
    Publication date: March 30, 2017
    Applicant: Applied Materials, Inc.
    Inventors: Dominic J. Benvegnu, Boguslaw A. Swedek, David J. Lischka
  • Patent number: 9583405
    Abstract: Methods and apparatus for spectrum-based endpointing. An endpointing method includes selecting a reference spectrum. The reference spectrum is a spectrum of white light reflected from a film of interest on a first substrate and has a thickness greater than a target thickness. The reference spectrum is empirically selected for particular spectrum-based endpoint determination logic so that the target thickness is achieved when endpoint is called by applying the particular spectrum-based endpoint logic. The method includes obtaining a current spectrum. The current spectrum is a spectrum of white light reflected from a film of interest on a second substrate when the film of interest is being subjected to a polishing step and has a current thickness that is greater than the target thickness. The method includes determining, for the second substrate, when an endpoint of the polishing step has been achieved. The determining is based on the reference and current spectra.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: February 28, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Dominic J. Benvegnu, Jeffrey Drue David, Boguslaw A. Swedek
  • Patent number: 9564377
    Abstract: A polishing system receives one or more target parameters for a selected peak in a spectrum of light, polishes a substrate, measures a current spectrum of light reflected from the substrate while the substrate is being polished, identifies the selected peak in the current spectrum, measures one or more current parameters of the selected peak in the current spectrum, compares the current parameters of the selected peak to the target parameters, and ceases to polish the substrate when the current parameters and the target parameters have a pre defined relationship.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: February 7, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Dominic J. Benvegnu, Boguslaw A. Swedek, David J. Lischka
  • Patent number: 9551567
    Abstract: Among other things, a machine based method includes representing a plurality of spectra reflected from one or more substrates at a plurality of different positions on the one or more substrates in the form of a first matrix; decomposing, by one or more computers, the first matrix into products of at least two component matrixes of a first set of component matrixes; reducing dimensions of each of the at least two component matrixes to produce a second set of component matrixes containing the at least two matrixes with reduced dimensions; and generating, by the one or more computers, a second matrix by taking a product of the matrixes of the second set of component matrixes.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: January 24, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Boguslaw A. Swedek, Benjamin Cherian
  • Patent number: 9496190
    Abstract: During polishing of a first substrate at a first polishing station, a sequence of measurements by a first in-situ monitoring system is monitored to determining a first time at which the first sequence exhibits a first predefined feature indicating a predetermined thickness of an overlying layer, and during polishing of the first substrate at a second polishing station, a sequence of measurements by a second in-situ monitoring system is monitored to determine a second time indicating clearance of the overlying layer and exposure of the underlying layer. The first time is used to calculate a first adjusted polishing pressure for a second substrate at the first polishing station, and the second time is used to calculate a second adjusted polishing pressure for the second substrate at the second polishing station.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: November 15, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Kun Xu, Feng Liu, Dominic J. Benvegnu, Boguslaw A. Swedek, Yuchun Wang, Wen-Chiang Tu, Laksh Karuppiah
  • Patent number: 9482610
    Abstract: A method of controlling processing of a substrate includes measuring a spectrum reflected from the substrate, for each partition of a plurality of partitions of the measured spectrum, computing a partition value based on the measured spectrum within the partition to generate a plurality of partition values, for each reference spectrum signature of a plurality of reference spectrum signatures, determining a membership function for each partition, for each partition, computing a membership value based on the membership function for the partition and the partition value for the partition to generate a plurality of groups of membership values with each group of the plurality of groups associated with a reference spectrum signature, selecting a best matching reference spectrum signature from the plurality of reference spectra signatures based on the plurality of groups of membership values, and determining a characterizing value associated with the best matching reference spectrum signature.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: November 1, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Kiran Lall Shrestha, Boguslaw A. Swedek, Jeffrey Drue David, Harry Q. Lee