Patents by Inventor Bon-Woong Koo

Bon-Woong Koo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10825653
    Abstract: A method for improving the ion beam quality in an ion implanter is disclosed. In some ion implantation systems, contaminants from the ion source are extracted with the desired ions, introducing contaminants to the workpiece. These contaminants may be impurities in the ion source chamber. This problem is exacerbated when mass analysis of the extracted ion beam is not performed, and is further exaggerated when the desired feedgas includes a halogen. The introduction of a diluent gas in the ion chamber may reduce the deleterious effects of the halogen on the inner surfaces of the chamber, reducing contaminants in the extracted ion beam. In some embodiments, the diluent gas may be germane or silane.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: November 3, 2020
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: John W. Graff, Bon-Woong Koo, John A. Frontiero, Nicholas P. T. Bateman, Timothy J. Miller, Vikram M. Bholse
  • Publication number: 20200343071
    Abstract: Provided herein are approaches for increasing efficiency of ion sources. In some embodiments, an apparatus, such as an ion source, may include a chamber housing having a first end wall and a second end wall, and an extraction plate coupled to at least one of the first end wall and the second end wall. The extraction plate may include an extraction aperture. The apparatus may further include a tubular cathode extending between the first end wall and the second end wall.
    Type: Application
    Filed: July 8, 2020
    Publication date: October 29, 2020
    Applicant: APPLIED Materials, Inc.
    Inventors: Bon-Woong Koo, Svetlana Radovanov, Frank Sinclair, You Chia Li, Peter Ewing, Ajdin Sarajlic, Christopher A. Rowland, Nunzio Carbone
  • Patent number: 10804075
    Abstract: A method for improving the ion beam quality in an ion implanter is disclosed. In some ion implantation systems, contaminants from the ion source are extracted with the desired ions, introducing contaminants to the workpiece. These contaminants may be impurities in the ion source chamber. This problem is exacerbated when mass analysis of the extracted ion beam is not performed, and is further exaggerated when the desired feedgas includes a halogen. The introduction of a diluent gas in the ion chamber may reduce the deleterious effects of the halogen on the inner surfaces of the chamber, reducing contaminants in the extracted ion beam. In some embodiments, the diluent gas may be germane or silane.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: October 13, 2020
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: John W. Graff, Bon-Woong Koo, John A. Frontiero, Nicholas P T Bateman, Timothy J. Miller, Vikram M. Bhosle
  • Publication number: 20200294765
    Abstract: An ion source having dual indirectly heated cathodes is disclosed. Each of the cathodes may be independently biased relative to its respective filament so as to vary the profile of the beam current that is extracted from the ion source. In certain embodiments, the ion source is used in conjunction with an ion implanter. The ion implanter comprises a beam profiler to measure the current of the ribbon ion beam as a function of beam position. A controller uses this information to independently control the bias voltages of the two indirectly heated cathodes so as to vary the uniformity of the ribbon ion beam. In certain embodiments, the current passing through each filament may also be independently controlled by the controller.
    Type: Application
    Filed: June 3, 2020
    Publication date: September 17, 2020
    Inventors: Bon-Woong Koo, Jun Lu, Frank Sinclair, Eric D. Hermanson, Joseph E. Pierro, Michael D. Johnson, Michael S. DeLucia, Antonella Cucchetti
  • Publication number: 20200294750
    Abstract: An indirectly heated cathode ion source having an electrically isolated extraction plate is disclosed. By isolating the extraction plate, a different voltage can be applied to the extraction plate than to the body of the arc chamber. By applying a more positive voltage to the extraction plate, more efficient ion source operation with higher plasma density can be achieved. In this mode the plasma potential is increased, and the electrostatic sheath reduces losses of electrons to the chamber walls. By applying a more negative voltage, an ion rich sheath adjacent to the extraction aperture can be created. In this mode, conditioning and cleaning of the extraction plate is achieved via ion bombardment. Further, in certain embodiments, the voltage applied to the extraction plate can be pulsed to allow ion extraction and cleaning to occur simultaneously.
    Type: Application
    Filed: March 13, 2019
    Publication date: September 17, 2020
    Inventors: Svetlana B. Radovanov, Bon-Woong Koo, Alexandre Likhanskii
  • Patent number: 10748738
    Abstract: Provided herein are approaches for increasing efficiency of ion sources. In some embodiments, an apparatus, such as an ion source, may include a chamber housing having a first end wall and a second end wall, and an extraction plate coupled to at least one of the first end wall and the second end wall. The extraction plate may include an extraction aperture. The apparatus may further include a tubular cathode extending between the first end wall and the second end wall.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: August 18, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Bon-Woong Koo, Svetlana Radovanov, Frank Sinclair, You Chia Li, Peter Ewing, Ajdin Sarajlic, Christopher A. Rowland, Nunzio Carbone
  • Patent number: 10741361
    Abstract: An ion source having dual indirectly heated cathodes is disclosed. Each of the cathodes may be independently biased relative to its respective filament so as to vary the profile of the beam current that is extracted from the ion source. In certain embodiments, the ion source is used in conjunction with an ion implanter. The ion implanter comprises a beam profiler to measure the current of the ribbon ion beam as a function of beam position. A controller uses this information to independently control the bias voltages of the two indirectly heated cathodes so as to vary the uniformity of the ribbon ion beam. In certain embodiments, the current passing through each filament may also be independently controlled by the controller.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: August 11, 2020
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Jun Lu, Frank Sinclair, Eric D. Hermanson, Joseph E. Pierro, Michael D. Johnson, Michael S. DeLucia, Antonella Cucchetti
  • Publication number: 20200144018
    Abstract: A method for improving the beam current for certain ion beams, and particularly germanium and argon, is disclosed. The use of argon as a second gas has been shown to improve the ionization of germane, allowing the formation of a germanium ion beam of sufficient beam current without the use of a halogen. Additionally, the use of germane as a second gas has been shown to improve the beam current of an argon ion beam.
    Type: Application
    Filed: November 1, 2018
    Publication date: May 7, 2020
    Inventors: Bon-Woong Koo, Ajdin Sarajlic, Ronald Johnson, Nunzio V. Carbone, Peter Ewing, Mervyn Deegan
  • Publication number: 20190385811
    Abstract: An ion source having dual indirectly heated cathodes is disclosed. Each of the cathodes may be independently biased relative to its respective filament so as to vary the profile of the beam current that is extracted from the ion source. In certain embodiments, the ion source is used in conjunction with an ion implanter. The ion implanter comprises a beam profiler to measure the current of the ribbon ion beam as a function of beam position. A controller uses this information to independently control the bias voltages of the two indirectly heated cathodes so as to vary the uniformity of the ribbon ion beam. In certain embodiments, the current passing through each filament may also be independently controlled by the controller.
    Type: Application
    Filed: August 29, 2019
    Publication date: December 19, 2019
    Inventors: Bon-Woong Koo, Jun Lu, Frank Sinclair, Eric D. Hermanson, Joseph E. Pierro, Michael D. Johnson, Michael S. DeLucia, Antonella Cucchetti
  • Patent number: 10446371
    Abstract: An apparatus and methods of improving the ion beam quality of a halogen-based source gas are disclosed. Unexpectedly, the introduction of a noble gas, such as argon or neon, to an ion source chamber may increase the percentage of desirable ion species, while decreasing the amount of contaminants and halogen-containing ions. This is especially beneficial in non-mass analyzed implanters, where all ions are implanted into the workpiece. In one embodiment, a first source gas, comprising a processing species and a halogen is introduced into a ion source chamber, a second source gas comprising a hydride, and a third source gas comprising a noble gas are also introduced. The combination of these three source gases produces an ion beam having a higher percentage of pure processing species ions than would occur if the third source gas were not used.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: October 15, 2019
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Vikram M. Bhosle, John A. Frontiero
  • Patent number: 10446372
    Abstract: An ion source having dual indirectly heated cathodes is disclosed. Each of the cathodes may be independently biased relative to its respective filament so as to vary the profile of the beam current that is extracted from the ion source. In certain embodiments, the ion source is used in conjunction with an ion implanter. The ion implanter comprises a beam profiler to measure the current of the ribbon ion beam as a function of beam position. A controller uses this information to independently control the bias voltages of the two indirectly heated cathodes so as to vary the uniformity of the ribbon ion beam. In certain embodiments, the current passing through each filament may also be independently controlled by the controller.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: October 15, 2019
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Jun Lu, Frank Sinclair, Eric D. Hermanson, Joseph E. Pierro, Michael D. Johnson, Michael S. DeLucia, Antonella Cucchetti
  • Publication number: 20190198292
    Abstract: A system and method for optimizing a ribbon ion beam in a beam line implantation system is disclosed. The system includes a mass resolving apparatus having a resolving aperture, in which the resolving aperture may be moved in the X and Z directions. Additionally, a controller is able to manipulate the mass analyzer and quadrupole lenses so that the crossover point of desired ions can also be moved in the X and Z directions. By manipulating the crossover point and the resolving aperture, the parameters of the ribbon ion beam may be manipulated to achieve a desired result. Movement of the crossover point in the X direction may affect the mean horizontal angle of the beamlets, while movement of the crossover point in the Z direction may affect the horizontal angular spread and beam current.
    Type: Application
    Filed: December 21, 2017
    Publication date: June 27, 2019
    Inventors: Bon-Woong Koo, Robert C. Lindberg, Eric D. Hermanson, Frank Sinclair, Antonella Cucchetti, Randy Martin, Michael D. Johnson, Ana Samolov, Svetlana B. Radovanov
  • Patent number: 10290475
    Abstract: A plasma processing apparatus includes a process chamber housing defining a process chamber, a platen positioned in the process chamber for supporting a workpiece, a source configured to generate plasma in the process chamber, and a biasing system. The biasing system is configured to bias the platen with a negatively biased DC signal to attract ions from the plasma towards the workpiece during a first processing time interval and configured to bias the platen with a positively biased DC signal to repel ions from the platen towards interior surfaces of the process chamber housing during a cleaning time interval. The cleaning time interval is separate from the first processing time interval and occurs after the first processing time interval.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: May 14, 2019
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Richard M. White
  • Patent number: 10290466
    Abstract: An apparatus and methods of improving the ion beam quality of a halogen-based source gas are disclosed. Unexpectedly, the introduction of a noble gas, such as argon, to an ion source chamber may increase the percentage of desirable ion species, while decreasing the amount of contaminants and halogen-containing ions. This is especially beneficial in non-mass analyzed implanters, where all ions are implanted into the workpiece. In one embodiment, a first source gas, comprising a dopant and a halogen is introduced into an ion source chamber, a second source gas comprising a hydride, and a third source gas comprising a noble gas are also introduced. The combination of these three source gases produces an ion beam having a higher percentage of pure dopant ions than would occur if the third source gas were not used.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: May 14, 2019
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Vikram M. Bhosle, John A. Frontiero, Nicholas P. T. Bateman, Timothy J. Miller, Svetlana B. Radovanov, Min-Sung Jeon, Peter F. Kurunczi, Christopher J. Leavitt
  • Patent number: 10290462
    Abstract: An apparatus for the creation of high current ion beams is disclosed. The apparatus includes an ion source, such as a RF ion source or an indirectly heated cathode (IHC) ion source, having an extraction aperture. Disposed proximate the extraction aperture is a bias electrode, which has a hollow center portion that is aligned with the extraction aperture. A magnetic field is created along the perimeter of the hollow center portion, which serves to contain electrons within a confinement region. Electrons in the confinement region energetically collide with neutral particles, increasing the number of ions that are created near the extraction aperture. The magnetic field may be created using two magnets that are embedded in the bias electrode. Alternatively, a single magnet or magnetic coils may be used to create this magnetic field.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: May 14, 2019
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Alexandre Likhanskii, Svetlana B. Radovanov, Anthony Renau
  • Patent number: 10262833
    Abstract: An ion source with improved temperature control is disclosed. A portion of the ion source is nestled within a recessed cavity in a heat sink, where the portion of the ion source and the recessed cavity are each shaped so that expansion of the ion source causes high pressure thermal contact with the heat sink. For example, the ion source may have a tapered cylindrical end, which fits within a recessed cavity in the heat sink. Thermal expansion of the ion source causes the tapered cylindrical end to press against the recessed cavity in the heat sink. By proper selection of the temperature of the heat sink, the temperature and flow of coolant fluid through the heat sink, and the size of the gap between the heat sink and the ion source, the temperature of the ion source can be controlled.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: April 16, 2019
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Scott C. Holden, Bon-Woong Koo, Brant S. Binns, Richard M. White, Kenneth L. Starks, Eric R. Cobb
  • Publication number: 20190027341
    Abstract: A method for improving the ion beam quality in an ion implanter is disclosed. In some ion implantation systems, contaminants from the ion source are extracted with the desired ions, introducing contaminants to the workpiece. These contaminants may be impurities in the ion source chamber. This problem is exacerbated when mass analysis of the extracted ion beam is not performed, and is further exaggerated when the desired feedgas includes a halogen. The introduction of a diluent gas in the ion chamber may reduce the deleterious effects of the halogen on the inner surfaces of the chamber, reducing contaminants in the extracted ion beam. In some embodiments, the diluent gas may be germane or silane.
    Type: Application
    Filed: September 21, 2018
    Publication date: January 24, 2019
    Inventors: John W. Graff, Bon-Woong Koo, John A. Frontiero, Nicholas P.T. Bateman, Timothy J. Miller, Vikram M. Bholse
  • Patent number: 10134568
    Abstract: Provided herein are approaches for dynamically modifying plasma volume in an ion source chamber by positioning an end plate and radio frequency (RF) antenna at a selected axial location. In one approach, an ion source includes a plasma chamber having a longitudinal axis extending between a first end wall and a second end wall, and an RF antenna adjacent a plasma within the plasma chamber, wherein the RF antenna is configured to provide RF energy to the plasma. The ion source may further include an end plate disposed within the plasma chamber, adjacent the first end wall, the end plate actuated along the longitudinal axis between a first position and a second position to adjust a volume of the plasma. By providing an actuable end plate and RF antenna, plasma characteristics may be dynamically controlled to affect ion source characteristics, such as composition of ion species, including metastable neutrals.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: November 20, 2018
    Assignee: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Bon-Woong Koo, Yong-Seok Hwang, Kyong-Jae Chung
  • Publication number: 20180211808
    Abstract: An ion source having dual indirectly heated cathodes is disclosed. Each of the cathodes may be independently biased relative to its respective filament so as to vary the profile of the beam current that is extracted from the ion source. In certain embodiments, the ion source is used in conjunction with an ion implanter. The ion implanter comprises a beam profiler to measure the current of the ribbon ion beam as a function of beam position. A controller uses this information to independently control the bias voltages of the two indirectly heated cathodes so as to vary the uniformity of the ribbon ion beam. In certain embodiments, the current passing through each filament may also be independently controlled by the controller.
    Type: Application
    Filed: March 27, 2018
    Publication date: July 26, 2018
    Inventors: Bon-Woong Koo, Jun Lu, Frank Sinclair, Eric D. Hermanson, Joseph E. Pierro, Michael D. Johnson, Michael S. DeLucia, Antonella Cucchetti
  • Publication number: 20180166250
    Abstract: An apparatus for the creation of high current ion beams is disclosed. The apparatus includes an ion source, such as a RF ion source or an indirectly heated cathode (IHC) ion source, having an extraction aperture. Disposed proximate the extraction aperture is a bias electrode, which has a hollow center portion that is aligned with the extraction aperture. A magnetic field is created along the perimeter of the hollow center portion, which serves to contain electrons within a confinement region. Electrons in the confinement region energetically collide with neutral particles, increasing the number of ions that are created near the extraction aperture. The magnetic field may be created using two magnets that are embedded in the bias electrode. Alternatively, a single magnet or magnetic coils may be used to create this magnetic field.
    Type: Application
    Filed: February 9, 2018
    Publication date: June 14, 2018
    Inventors: Bon-Woong Koo, Alexandre Likhanskii, Svetlana B. Radovanov, Anthony Renau