Patents by Inventor Bongsang Kim

Bongsang Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170314995
    Abstract: A semiconductor sensor system, in particular a bolometer, includes a substrate, an electrode supported by the substrate, an absorber spaced apart from the substrate, a voltage source, and a current source. The electrode can include a mirror, or the system may include a mirror separate from the electrode. Radiation absorption efficiency of the absorber is based on a minimum gap distance between the absorber and mirror. The current source applies a DC current across the absorber structure to produce a signal indicative of radiation absorbed by the absorber structure. The voltage source powers the electrode to produce a modulated electrostatic field acting on the absorber to modulate the minimum gap distance. The electrostatic field includes a DC component to adjust the absorption efficiency, and an AC component that cyclically drives the absorber to negatively interfere with noise in the signal.
    Type: Application
    Filed: October 9, 2015
    Publication date: November 2, 2017
    Inventors: Thomas Rocznik, Fabian Purkl, Gary O'Brien, Ando Feyh, Bongsang Kim, Ashwin Samarao, Gary Yama
  • Publication number: 20170297911
    Abstract: Provided herein is a method including forming a cavity in a first side of a first silicon wafer. An oxide layer is formed on the first side and in the cavity. The first side of the first silicon wafer is bonded to a first side of a second silicon wafer, and a gap control structure is deposited on a second side of the second silicon wafer. A MEMS structure is formed in the second silicon wafer. The second side of the second silicon wafer is eutecticly bonded to the third silicon wafer, and the eutectic bonding includes pressing the second silicon wafer to the third silicon wafer.
    Type: Application
    Filed: October 20, 2016
    Publication date: October 19, 2017
    Inventors: Jong II SHIN, Peter SMEYS, Bongsang KIM
  • Patent number: 9511998
    Abstract: A microelectromechanical system (MEMS) device includes a high density getter. The high density getter includes a silicon surface area formed by porosification or by the formation of trenches within a sealed cavity of the device. The silicon surface area includes a deposition of titanium or other gettering material to reduce the amount of gas present in the sealed chamber such that a low pressure chamber is formed. The high density getter is used in bolometers and gyroscopes but is not limited to those devices.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: December 6, 2016
    Assignee: Robert Bosch GmbH
    Inventors: Ashwin Samarao, Gary O'Brien, Ando Feyh, Gary Yama, Andrew Graham, Bongsang Kim, Fabian Purkl
  • Publication number: 20160137493
    Abstract: A microelectromechanical system (MEMS) device includes a high density getter. The high density getter includes a silicon surface area formed by porosification or by the formation of trenches within a sealed cavity of the device. The silicon surface area includes a deposition of titanium or other gettering material to reduce the amount of gas present in the sealed chamber such that a low pressure chamber is formed. The high density getter is used in bolometers and gyroscopes but is not limited to those devices.
    Type: Application
    Filed: March 13, 2014
    Publication date: May 19, 2016
    Applicant: Robert Bosch GmbH
    Inventors: Ashwin Samarao, Gary O'Brien, Ando Feyh, Gary Yama, Andrew Graham, Bongsang Kim, Fabian Purkl
  • Patent number: 9199838
    Abstract: In one embodiment, A MEMS sensor assembly includes a substrate, a first sensor supported by the substrate and including a first absorber spaced apart from the substrate, and a second sensor supported by the substrate and including (i) a second absorber spaced apart from the substrate, and (ii) at least one thermal shorting portion integrally formed with the second absorber and extending downwardly from the second absorber to the substrate thereby thermally shorting the second absorber to the substrate.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: December 1, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Gary O'Brien, Fabian Purkl, Ando Feyh, Bongsang Kim, Ashwin K Samarao, Thomas Rocznik, Gary Yama
  • Patent number: 9077060
    Abstract: A modally driven oscillating element periodically contacts one of more electrical contacts, thereby acting as a switch, otherwise known as a resonant switch, or “resoswitch”, with very high Q's, typically above 10000 in air, and higher in vacuum. Due to periodic constrained contacting of the contacts, the bandwidth of the switch is greatly improved. One or more oscillating elements may be vibrationally interconnected with conductive or nonconductive coupling elements, whereby increased bandwidths of such an overall switching system may be achieved. Using the resoswitch, power amplifiers and converters more closely approaching ideal may be implemented. Integrated circuit fabrication techniques may construct the resoswitch with other integrated CMOS elements for highly compact switching devices. Through introduction of specific geometries within the oscillating elements, displacement gains may be made where modal deflections are greatly increased, thereby reducing device drive voltages to 2.5 V or lower.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: July 7, 2015
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Clark Tu-Cuong Nguyen, Yang Lin, Wei-Chang Li, Bongsang Kim
  • Publication number: 20150115160
    Abstract: In one embodiment, A MEMS sensor assembly includes a substrate, a first sensor supported by the substrate and including a first absorber spaced apart from the substrate, and a second sensor supported by the substrate and including (i) a second absorber spaced apart from the substrate, and (ii) at least one thermal shorting portion integrally formed with the second absorber and extending downwardly from the second absorber to the substrate thereby thermally shorting the second absorber to the substrate.
    Type: Application
    Filed: October 2, 2014
    Publication date: April 30, 2015
    Inventors: Gary O'Brien, Fabian Purkl, Ando Feyh, Bongsang Kim, Ashwin K Samarao, Thomas Rocznik, Gary Yama
  • Patent number: 8946052
    Abstract: A method includes forming a release layer over a donor substrate. A plurality of devices made of a first semiconductor material are formed over the release layer. A first dielectric layer is formed over the plurality of devices such that all exposed surfaces of the plurality of devices are covered by the first dielectric layer. The plurality of devices are chemically attached to a receiving device made of a second semiconductor material different than the first semiconductor material, the receiving device having a receiving substrate attached to a surface of the receiving device opposite the plurality of devices. The release layer is etched to release the donor substrate from the plurality of devices. A second dielectric layer is applied over the plurality of devices and the receiving device to mechanically attach the plurality of devices to the receiving device.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: February 3, 2015
    Assignee: Sandia Corporation
    Inventors: Gregory N. Nielson, Carlos Anthony Sanchez, Anna Tauke-Pedretti, Bongsang Kim, Jeffrey Cederberg, Murat Okandan, Jose Luis Cruz-Campa, Paul J. Resnick
  • Patent number: 8669823
    Abstract: An ovenized micro-electro-mechanical system (MEMS) resonator including: a substantially thermally isolated mechanical resonator cavity; a mechanical oscillator coupled to the mechanical resonator cavity; and a heating element formed on the mechanical resonator cavity.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: March 11, 2014
    Assignee: Sandia Corporation
    Inventors: Roy H. Olsson, Kenneth Wojciechowski, Bongsang Kim
  • Patent number: 8508370
    Abstract: Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: August 13, 2013
    Assignee: Sandia Corporation
    Inventors: Ihab F. El-Kady, Roy H. Olsson, Patrick Hopkins, Charles Reinke, Bongsang Kim
  • Publication number: 20110067984
    Abstract: A modally driven oscillating element periodically contacts one of more electrical contacts, thereby acting as a switch, otherwise known as a resonant switch, or “resoswitch”, with very high Q's, typically above 10000 in air, and higher in vacuum. Due to periodic constrained contacting of the contacts, the bandwidth of the switch is greatly improved. One or more oscillating elements may be vibrationally interconnected with conductive or nonconductive coupling elements, whereby increased bandwidths of such an overall switching system may be achieved. Using the resoswitch, power amplifiers and converters more closely approaching ideal may be implemented. Integrated circuit fabrication techniques may construct the resoswitch with other integrated CMOS elements for highly compact switching devices. Through introduction of specific geometries within the oscillating elements, displacement gains may be made where modal deflections are greatly increased, thereby reducing device drive voltages to 2.5 V or lower.
    Type: Application
    Filed: September 9, 2010
    Publication date: March 24, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Clark Tu-Cuong Nguyen, Yang Lin, Wei-Chang Li, Bongsang Kim
  • Patent number: 7824098
    Abstract: Mechanical transducers such as pressure sensors, resonators or other frequency-reference devices are implemented under conditions characterized by different temperatures. According to an example embodiment of the present invention, a combination of materials is implemented for mechanical transducer applications to mitigate temperature-related changes at or near a selected turnover temperature. In one application, a material property mismatch is used to facilitate single-anchor transducer applications, such as for resonators. Another application is directed to a Silicon-Silicon dioxide combination of materials.
    Type: Grant
    Filed: January 21, 2008
    Date of Patent: November 2, 2010
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Renata Melamud, Bongsang Kim, Matthew Hopcroft, Saurabh Chandorkar, Manu Agarwal, Thomas W. Kenny
  • Patent number: 7806586
    Abstract: Mechanical transducers such as pressure sensors, resonators or other frequency-reference devices are implemented under conditions characterized by different temperatures. According to an example embodiment of the present invention, a combination of materials is implemented for mechanical transducer applications to mitigate temperature-related changes. In one application, a material property mismatch is used to facilitate single-anchor transducer applications, such as for resonators. Another application is directed to a Silicon-Silicon dioxide combination of materials.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: October 5, 2010
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Renata Melamud, Bongsang Kim, Matt Hopcroft, Saurabh Chandorkar, Manu Agarwal, Thomas W. Kenny
  • Publication number: 20080204173
    Abstract: Mechanical transducers such as pressure sensors, resonators or other frequency-reference devices are implemented under conditions characterized by different temperatures. According to an example embodiment of the present invention, a combination of materials is implemented for mechanical transducer applications to mitigate temperature-related changes at or near a selected turnover temperature. In one application, a material property mismatch is used to facilitate single-anchor transducer applications, such as for resonators. Another application is directed to a Silicon-Silicon dioxide combination of materials.
    Type: Application
    Filed: January 21, 2008
    Publication date: August 28, 2008
    Inventors: Renata Melamud, Bongsang Kim, Matthew Hopcroft, Saurabh Chandorkar, Manu Agarwal, Thomas W. Kenny
  • Publication number: 20070277620
    Abstract: Mechanical transducers such as pressure sensors, resonators or other frequency-reference devices are implemented under conditions characterized by different temperatures. According to an example embodiment of the present invention, a combination of materials is implemented for mechanical transducer applications to mitigate temperature-related changes. In one application, a material property mismatch is used to facilitate single-anchor transducer applications, such as for resonators. Another application is directed to a Silicon-Silicon dioxide combination of materials.
    Type: Application
    Filed: June 2, 2006
    Publication date: December 6, 2007
    Inventors: Renata Melamud, Bongsang Kim, Matt Hopcroft, Saurabh Chandorkar, Manu Agarwal, Thomas W. Kenny