Patents by Inventor Bon-Woong Koo
Bon-Woong Koo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12154755Abstract: An IHC ion source having increased plasma potential is disclosed. In certain embodiments, the extraction plate is biased at a higher voltage than the body of the arc chamber to achieve the higher plasma potential. Shielding electrodes may be utilized to remove the interaction between the biased extraction plate and the plasma. The cross-section of the arc chamber may be circular or nearly circular to facilitate the rotation of electrons in the chamber. In another embodiment, biased electrodes may be disposed in the chamber on opposite sides of the extraction aperture in the height direction. In some embodiments, only one of the electrodes is biased at a voltage greater than the body of the arc chamber.Type: GrantFiled: December 15, 2021Date of Patent: November 26, 2024Assignee: Applied Materials, Inc.Inventors: June Young Kim, Jin Young Choi, Yong-Seok Hwang, Kyoung-Jae Chung, Bon-Woong Koo
-
Publication number: 20240371602Abstract: An ion implanter that includes an ion source to generate an ion beam, a platen disposed in a process chamber to support a workpiece that is treated with the ion beam, and a plasma flood gun that results in fewer particles in the process chamber is disclosed. The plasma flood gun includes at least one plasma chamber, each having at least one aperture through which low energy ions and electrons are emitted. A sweeper is located near the aperture, positioned so as to be between the aperture and the upstream components. The sweeper is heated using resistive elements or a halogen lamp so as to elevate its temperature, which limited the amount of deposition that occurs on the sweeper.Type: ApplicationFiled: May 5, 2023Publication date: November 7, 2024Inventors: Frank Sinclair, Paul Joseph Murphy, Bon-Woong Koo, Gregory Edward Stratoti, Tseh-Jen Hsieh, Alexandre Likhanskii, Glenn Green
-
Publication number: 20240274404Abstract: An ion implanter and a method for reducing particle formation in a process chamber are disclosed. The ion implanter includes one or more gas sources in communication with the process chamber to introduce an oxygen-containing gas. After certain criteria has been met, a gas treatment process is initiated. This criteria may be related to the number of workpieces that have been processed or based on the number of particles detected in the process chamber. During the gas treatment process, the oxygen-containing gas is introduced and interacts with depositions disposed on the walls of the process chamber to transform the brittle film into a softer more pliable film that may be less susceptible to breaking. In some embodiments, the oxygen-containing gas may be oxygen gas, ozone or oxygen radicals which are introduced to the process chambers. In some embodiments, water vapor is introduced.Type: ApplicationFiled: February 9, 2023Publication date: August 15, 2024Inventors: Frank Sinclair, Tseh-Jen Hsieh, Vikram M. Bhosle, Bon-Woong Koo, Gregory Edward Stratoti
-
Publication number: 20240249908Abstract: A dose cup assembly that results in less particles in a process chamber is disclosed. The dose cup assembly includes a faceplate attached to a back wall of the process chamber, and having an opening; an aperture plate defining a plurality of slots; and a tunnel having walls and sidewalls and having a proximal end and a distal end, located between the faceplate and the aperture plate, such that the proximal end is nearer to the faceplate and the distal end is nearer to the aperture plate; wherein at least one of the faceplate, the walls, the sidewalls or the aperture plate has one or more exposed outer surfaces that comprise silicon. The exposed outer surfaces may be silicon. In some embodiments, the faceplate, the walls, the sidewalls or the aperture plate may be graphite, aluminum, or stainless steel which is coated with silicon or silicon carbide.Type: ApplicationFiled: January 25, 2023Publication date: July 25, 2024Inventors: Frank Sinclair, Paul Joseph Murphy, Bon-Woong Koo, Gregory Edward Stratoti, Tseh-Jen Hsieh, Glenn Green
-
Publication number: 20230386786Abstract: A method of reducing gallium particle formation in an ion implanter. The method may include performing a gallium implant process in the ion implanter, the gallium implant process comprising implanting a first dose of gallium ions from a gallium ion beam into a first set of substrates, while the first set of substrates are disposed in a process chamber of the beamline ion implanter. As such, a metallic gallium material may be deposited on one or more surfaces within a downstream portion of the ion implanter. The method may include performing a reactive gas bleed operation into at least one location of the downstream portion of the ion implanter, the reactive bleed operation comprising providing a reactive gas through a gas injection assembly, wherein the metallic gallium material is altered by reaction with the reactive gas.Type: ApplicationFiled: April 19, 2023Publication date: November 30, 2023Applicant: Applied Materials, Inc.Inventors: Frank Sinclair, Bon-Woong Koo, Tseh-Jen Hsieh, Gregory E. Stratoti
-
Patent number: 11810746Abstract: An ion source having an extraction plate with a variable thickness is disclosed. The extraction plate has a protrusion on its interior or exterior surface proximate the extraction aperture. The protrusion increases the thickness of the extraction aperture in certain regions. This increases the loss area in those regions, which serves as a sink for ions and electrons. In this way, the plasma density is decreased more significantly in the regions where the extraction aperture has a greater thickness. The shape of the protrusion may be modified to achieve the desired plasma uniformity. Thus, it may be possible to create an extracted ion beam having a more uniform ion density. In some tests, the uniformity of the beam current along the width direction was improved by between 20% and 50%.Type: GrantFiled: September 13, 2021Date of Patent: November 7, 2023Assignee: Applied Materials, Inc.Inventors: Alexandre Likhanskii, Alexander S. Perel, Jay T. Scheuer, Bon-Woong Koo, Robert C. Lindberg, Peter F. Kurunczi, Graham Wright
-
Publication number: 20230187165Abstract: An IHC ion source having increased plasma potential is disclosed. In certain embodiments, the extraction plate is biased at a higher voltage than the body of the arc chamber to achieve the higher plasma potential. Shielding electrodes may be utilized to remove the interaction between the biased extraction plate and the plasma. The cross-section of the arc chamber may be circular or nearly circular to facilitate the rotation of electrons in the chamber. In another embodiment, biased electrodes may be disposed in the chamber on opposite sides of the extraction aperture in the height direction. In some embodiments, only one of the electrodes is biased at a voltage greater than the body of the arc chamber.Type: ApplicationFiled: December 15, 2021Publication date: June 15, 2023Inventors: June Young Kim, Jin Young Choi, Yong-Seok Hwang, Kyoung-Jae Chung, Bon-Woong Koo
-
Publication number: 20230138326Abstract: A load lock in which the pumping speed is controlled so as to minimize the possibility of condensation is disclosed. The load lock is in communication with a vacuum pump and a valve. A controller is used to control the valve such that the supersaturation ratio within the load lock does not exceed a predetermined threshold, which is less than or equal to the critical value at which vapor condenses. In certain embodiments, a computer model is used to generate a profile, which may be a pumping speed profile or a pressure profile, and the valve is controlled according to the profile. In another embodiment, the load lock comprises a temperature sensor and a pressure sensor. The controller may calculate the supersaturation ratio based on these parameters and control the valve accordingly.Type: ApplicationFiled: October 28, 2021Publication date: May 4, 2023Inventors: D. Jeffrey Lischer, Bon-Woong Koo, Dawei Sun, Chi-Yang Cheng, Paul Joseph Murphy, Frank Sinclair, Gregory Edward Stratoti, Tseh-Jen Hsieh, Wayne Chen, Guy Oteri
-
Patent number: 11631567Abstract: An ion source including a chamber housing defining an ion source chamber and including an extraction plate on a front side thereof, the extraction plate having an extraction aperture formed therein, and a tubular cathode disposed within the ion source chamber and having an opening formed in a front half thereof nearest the extraction aperture, wherein a rear half of the tubular cathode furthest from the extraction aperture is closed.Type: GrantFiled: August 20, 2021Date of Patent: April 18, 2023Assignee: Applied Materials, Inc.Inventors: Bon-Woong Koo, Frank Sinclair, Alexandre Likhanskii, Svetlana Radovanov, Alexander Perel, Graham Wright, Jay T. Scheuer, Daniel Tieger, You Chia Li, Jay Johnson, Tseh-Jen Hsieh, Ronald Johnson
-
Publication number: 20230080083Abstract: An ion source having an extraction plate with a variable thickness is disclosed. The extraction plate has a protrusion on its interior or exterior surface proximate the extraction aperture. The protrusion increases the thickness of the extraction aperture in certain regions. This increases the loss area in those regions, which serves as a sink for ions and electrons. In this way, the plasma density is decreased more significantly in the regions where the extraction aperture has a greater thickness. The shape of the protrusion may be modified to achieve the desired plasma uniformity. Thus, it may be possible to create an extracted ion beam having a more uniform ion density. In some tests, the uniformity of the beam current along the width direction was improved by between 20% and 50%.Type: ApplicationFiled: September 13, 2021Publication date: March 16, 2023Inventors: Alexandre Likhanskii, Alexander S. Perel, Jay T. Scheuer, Bon-Woong Koo, Robert C. Lindberg, Peter F. Kurunczi, Graham Wright
-
Patent number: 11600473Abstract: An ion source having an electrically isolated extraction plate is disclosed. By isolating the extraction plate, a different voltage can be applied to the extraction plate than to the body of the arc chamber. By applying a more positive voltage to the extraction plate, more efficient ion source operation with higher plasma density can be achieved. In this mode the plasma potential is increased, and the electrostatic sheath reduces losses of electrons to the chamber walls. By applying a more negative voltage, an ion rich sheath adjacent to the extraction aperture can be created. In this mode, conditioning and cleaning of the extraction plate is achieved via ion bombardment. Further, in certain embodiments, the voltage applied to the extraction plate can be pulsed to allow ion extraction and cleaning to occur simultaneously.Type: GrantFiled: January 15, 2021Date of Patent: March 7, 2023Assignee: Applied Materials, Inc.Inventors: Svetlana B. Radovanov, Bon-Woong Koo, Alexandre Likhanskii
-
Patent number: 11562885Abstract: A beamline ion implanter and a method of operating a beamline ion implanter. A method may include performing an ion implantation procedure during a first time period on a first set of substrates, in a process chamber of the ion implanter, and performing a first pressure-control routine during a second time period by: introducing a predetermined gas to reach a predetermined pressure into at least a downstream portion of the beam-line for a second time period. The method may include, after completion of the first pressure-control routine, performing the ion implantation procedure on a second set of substrates during a third time period.Type: GrantFiled: June 18, 2021Date of Patent: January 24, 2023Assignee: Applied Materials, Inc.Inventors: Thomas Stacy, Jay T. Scheuer, Eric D. Hermanson, Bon-Woong Koo, Tseh-Jen Hsieh
-
Patent number: 11450504Abstract: A method for improving the beam current for certain ion beams, and particularly germanium and argon, is disclosed. The use of argon as a second gas has been shown to improve the ionization of germane, allowing the formation of a germanium ion beam of sufficient beam current without the use of a halogen. Additionally, the use of germane as a second gas has been shown to improve the beam current of an argon ion beam.Type: GrantFiled: September 17, 2020Date of Patent: September 20, 2022Assignee: Applied Materials, Inc.Inventors: Bon-Woong Koo, Ajdin Sarajlic, Ronald Johnson, Nunzio V. Carbone, Peter Ewing, Mervyn Deegan
-
Patent number: 11424097Abstract: Provided herein are approaches for increasing efficiency of ion sources. In some embodiments, an apparatus, such as an ion source, may include a chamber housing having a first end wall and a second end wall, and an extraction plate coupled to at least one of the first end wall and the second end wall. The extraction plate may include an extraction aperture. The apparatus may further include a tubular cathode extending between the first end wall and the second end wall.Type: GrantFiled: July 8, 2020Date of Patent: August 23, 2022Assignee: APPLIED Materials, Inc.Inventors: Bon-Woong Koo, Svetlana Radovanov, Frank Sinclair, You Chia Li, Peter Ewing, Ajdin Sarajlic, Christopher A. Rowland, Nunzio Carbone
-
Publication number: 20220037114Abstract: A beamline ion implanter and a method of operating a beamline ion implanter. A method may include performing an ion implantation procedure during a first time period on a first set of substrates, in a process chamber of the ion implanter, and performing a first pressure-control routine during a second time period by: introducing a predetermined gas to reach a predetermined pressure into at least a downstream portion of the beam-line for a second time period. The method may include, after completion of the first pressure-control routine, performing the ion implantation procedure on a second set of substrates during a third time period.Type: ApplicationFiled: June 18, 2021Publication date: February 3, 2022Applicant: Applied Materials, Inc.Inventors: Thomas Stacy, Jay T. Scheuer, Eric D. Hermanson, Bon-Woong Koo, Tseh-Jen Hsieh
-
Publication number: 20210383995Abstract: An ion source including a chamber housing defining an ion source chamber and including an extraction plate on a front side thereof, the extraction plate having an extraction aperture formed therein, and a tubular cathode disposed within the ion source chamber and having an opening formed in a front half thereof nearest the extraction aperture, wherein a rear half of the tubular cathode furthest from the extraction aperture is closed.Type: ApplicationFiled: August 20, 2021Publication date: December 9, 2021Applicant: Applied Materials, Inc.Inventors: Bon-Woong Koo, Frank Sinclair, Alexandre Likhanskii, Svetlana Radovanov, Alexander Perel, Graham Wright, Jay T. Scheuer, Daniel Tieger, You Chia Li, Jay Johnson, Tseh-Jen Hsieh, Ronald Johnson
-
Patent number: 11127557Abstract: An ion source including a chamber housing defining an ion source chamber and including an extraction plate on a front side thereof, the extraction plate having an extraction aperture formed therein, and a tubular cathode disposed within the ion source chamber and having a slot formed in a front-facing semi-cylindrical portion thereof disposed in a confronting relationship with the extraction aperture, wherein a rear-facing semi-cylindrical portion of the tubular cathode directed away from the extraction aperture is closed.Type: GrantFiled: March 12, 2020Date of Patent: September 21, 2021Assignee: Applied Materials, Inc.Inventors: Bon-Woong Koo, Frank Sinclair, Alexandre Likhanskii, Svetlana Radovanov, Alexander Perel, Graham Wright, Jay T. Scheuer, Daniel Tieger, You Chia Li, Jay Johnson, Tseh-Jen Hsieh, Ronald Johnson
-
Publication number: 20210287872Abstract: An ion source including a chamber housing defining an ion source chamber and including an extraction plate on a front side thereof, the extraction plate having an extraction aperture formed therein, and a tubular cathode disposed within the ion source chamber and having a slot formed in a front-facing semi-cylindrical portion thereof disposed in a confronting relationship with the extraction aperture, wherein a rear-facing semi-cylindrical portion of the tubular cathode directed away from the extraction aperture is closed.Type: ApplicationFiled: March 12, 2020Publication date: September 16, 2021Applicant: Applied Materials, Inc.Inventors: Bon-Woong Koo, Frank Sinclair, Alexandre Likhanskii, Svetlana Radovanov, Alexander Perel, Graham Wright, Jay T. Scheuer, Daniel Tieger, You Chia Li, Jay Johnson, Tseh-Jen Hsieh, Ronald Johnson
-
Patent number: 11114277Abstract: An ion source having dual indirectly heated cathodes is disclosed. Each of the cathodes may be independently biased relative to its respective filament so as to vary the profile of the beam current that is extracted from the ion source. In certain embodiments, the ion source is used in conjunction with an ion implanter. The ion implanter comprises a beam profiler to measure the current of the ribbon ion beam as a function of beam position. A controller uses this information to independently control the bias voltages of the two indirectly heated cathodes so as to vary the uniformity of the ribbon ion beam. In certain embodiments, the current passing through each filament may also be independently controlled by the controller.Type: GrantFiled: June 3, 2020Date of Patent: September 7, 2021Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Bon-Woong Koo, Jun Lu, Frank Sinclair, Eric D. Hermanson, Joseph E. Pierro, Michael D. Johnson, Michael S. DeLucia, Antonella Cucchetti
-
Patent number: D1051838Type: GrantFiled: December 10, 2021Date of Patent: November 19, 2024Assignee: Applied Materials, Inc.Inventors: Bon-Woong Koo, Frank Sinclair, Alexandre Likhanskii, Svetlana Radovanov, Alexander Perel, Graham Wright, Jay T. Scheuer, Daniel Tieger, You Chia Li, Jay Johnson, Tseh-Jen Hsieh, Ronald Johnson