Patents by Inventor Bor-Wen Chan

Bor-Wen Chan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7354847
    Abstract: A process for trimming a photoresist layer during the fabrication of a gate electrode in a MOSFET is described. A bilayer stack with a top photoresist layer on a thicker organic underlayer is patternwise exposed with 193 nm or 157 nm radiation to form a feature having a width w1 in the top layer. A pattern transfer through the underlayer is performed with an anisotropic etch based on H2/N2 and SO2 chemistry. The feature formed in the bilayer stack is trimmed by 10 nm or more to a width w2 by a HBr/O2/Cl2 plasma etch. The pattern transfer through an underlying gate layer is performed with a third etch based on HBr/O2/Cl2 chemistry. The underlayer is stripped by an O2 ashing with no damage to the gate electrode. Excellent profile control of the gate electrode is achieved and a larger (w1?w2) is possible than in prior art methods.
    Type: Grant
    Filed: January 26, 2004
    Date of Patent: April 8, 2008
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Bor-Wen Chan, Yi-Chun Huang, Baw-Ching Perng, Hun-Jan Tao
  • Publication number: 20070296052
    Abstract: A semiconductor device with improved roll-off resistivity and reliability are provided. The semiconductor device includes a gate dielectric overlying a semiconductor substrate, a gate electrode overlying the gate dielectric, a gate silicide region on the gate electrode, a source/drain region adjacent the gate dielectric, and a source/drain silicide region on the source/drain region, wherein the source/drain silicide region and the gate silicide region have different metal compositions.
    Type: Application
    Filed: June 26, 2006
    Publication date: December 27, 2007
    Inventors: Tan-Chen Lee, Bor-Wen Chan
  • Publication number: 20070222000
    Abstract: A method of forming a silicided gate on a substrate having active regions is provided. The method comprises forming silicide in the active regions and a portion of the gate, leaving a remaining portion of the gate unsilicided; forming a shielding layer over the active regions and gate after the forming step; forming a coating layer over portions of the shielding layer over the active regions; opening the shielding layer to expose the gate, wherein the coating layer protects the portions of the shielding layer over the active regions during the opening step; depositing a metal layer over the exposed gate; and annealing to cause the metal to react with the gate to silicidize at least a part of the remaining portion of the gate.
    Type: Application
    Filed: May 31, 2007
    Publication date: September 27, 2007
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Bor-Wen Chan, Jyu-Horng Shieh, Hun-Jan Tao
  • Patent number: 7241674
    Abstract: A method of forming a silicided gate on a substrate having active regions is provided. The method comprises forming silicide in the active regions and a portion of the gate, leaving a remaining portion of the gate unsilicided; forming a shielding layer over the active regions and gate after the forming step; forming a coating layer over portions of the shielding layer over the active regions; opening the shielding layer to expose the gate, wherein the coating layer protects the portions of the shielding layer over the active regions during the opening step; depositing a metal layer over the exposed gate; and annealing to cause the metal to react with the gate to silicidize at least a part of the remaining portion of the gate.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: July 10, 2007
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Bor-Wen Chan, Jyu-Horng Shieh, Hun-Jan Tao
  • Patent number: 7202172
    Abstract: A method of manufacturing a microelectronic device comprising forming a patterned feature over a substrate and employing a fluorine-containing plasma source to deposit a conformal polymer layer over the patterned feature and the substrate. The polymer layer is etched to expose the patterned feature and a portion of the substrate, thereby forming polymer spacers on opposing sides of the patterned feature.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: April 10, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bor-Wen Chan, Yu-I Wang, Han-Jan Tao
  • Patent number: 7195969
    Abstract: A strained channel NMOS and PMOS device pair including fully silicided gate electrodes and method for forming the same, the method including providing a semiconductor substrate including NMOS and PMOS device regions including respective gate structures including polysilicon gate electrodes; forming recessed regions on either side of a channel region including at least one of the NMOS and PMOS device regions; backfilling portions of the recessed regions with a semiconducting silicon alloy to exert a strain on the channel region; forming offset spacers on either side of the gate structures; thinning the polysilicon gate electrodes to a silicidation thickness to allow full metal silicidation through the silicidation thickness; ion implanting the polysilicon gate electrodes to adjust a work function; and, forming a metal silicide through the silicidation thickness to form metal silicide gate electrodes.
    Type: Grant
    Filed: December 31, 2004
    Date of Patent: March 27, 2007
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Bor-Wen Chan, Yuan-Hung Chiu, Han-Jan Tao
  • Patent number: 7122484
    Abstract: A method for removing organic material from an opening in a low k dielectric layer and above a metal layer on a substrate is disclosed. An ozone water solution comprised of one or more additives such as hydroxylamine or an ammonium salt is applied as a spray or by immersion. A chelating agent may be added to protect the metal layer from oxidation. A diketone may be added to the ozone water solution or applied in a gas or liquid phase in a subsequent step to remove any metal oxide that forms during the ozone treatment. A supercritical fluid mixture that includes CO2 and ozone can be used to remove organic residues that are not easily stripped by one of the aforementioned liquid solutions. The removal method prevents changes in the dielectric constant and refractive index of the low k dielectric layer and cleanly removes residues which improve device performance.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: October 17, 2006
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Baw-Ching Perng, Yi-Chen Huang, Jun-Lung Huang, Bor-Wen Chan, Peng-Fu Hsu, Hsin-Ching Shih, Lawrance Hsu, Hun-Jan Tao
  • Patent number: 7081413
    Abstract: A method for forming an ultra narrow semiconductive gate structure utilizes a tapered hardmask covered by an oxide liner. The tapered hardmask is formed over the semiconductive gate material by tapered etching. After the tapered hardmask structure is formed over the semiconductive material, an oxide layer is formed over the tapered hardmask. A sequence of highly selective etch operations are carried out to etch uncovered portions of the semiconductive gate material while the portions of the gate material covered by the tapered hardmask and oxide film remain unetched to form ultra narrow gate structures.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: July 25, 2006
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Bor-Wen Chan, Baw-Ching Perng, Ying-Tsung Chen
  • Publication number: 20060148181
    Abstract: A strained channel NMOS and PMOS device pair including fully silicided gate electrodes and method for forming the same, the method including providing a semiconductor substrate including NMOS and PMOS device regions including respective gate structures including polysilicon gate electrodes; forming recessed regions on either side of a channel region including at least one of the NMOS and PMOS device regions; backfilling portions of the recessed regions with a semiconducting silicon alloy to exert a strain on the channel region; forming offset spacers on either side of the gate structures; thinning the polysilicon gate electrodes to a silicidation thickness to allow full metal silicidation through the silicidation thickness; ion implanting the polysilicon gate electrodes to adjust a work function; and, forming a metal silicide through the silicidation thickness to form metal silicide gate electrodes.
    Type: Application
    Filed: December 31, 2004
    Publication date: July 6, 2006
    Inventors: Bor-Wen Chan, Yuan-Hung Chiu, Han-Jan Tao
  • Patent number: 7067391
    Abstract: A new method to form metal silicide gates in the fabrication of an integrated circuit device is achieved. The method comprises forming polysilicon lines overlying a substrate with a dielectric layer therebetween. A first isolation layer is formed overlying the substrate and the sidewalls of the polysilicon lines. The first isolation layer does not overlie the top surface of the polysilicon lines. The polysilicon lines are partially etched down such that the top surfaces of the polysilicon lines are below the top surface of the first isolation layer. A metal layer is deposited overlying the polysilicon lines. A thermal anneal is used to completely convert the polysilicon lines to metal silicide gates. The unreacted metal layer is removed to complete the device.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: June 27, 2006
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bor-Wen Chan, Chih-Hao Wang, Lawrance Hsu, Hun-Jan Tao
  • Patent number: 7023042
    Abstract: A process for forming a DRAM stacked capacitor structure with increased surface area, has been developed. The process features forming lateral grooves in the sides of a polysilicon storage node structure, during a dry etching procedure used to define the storage node structure. The grooves are selectively, and laterally formed in ion implanted veins, which in turn had been placed at various depths in an intrinsic polysilicon layer via a series of ion implantation steps, each performed at a specific implant energy. An isotopic component of the storage node structure, defining dry etch procedure, selectively etches the highly doped, ion implanted veins at a greater rate than the non-ion implanted regions of polysificon, located between the ion implanted veins, resulting in a necked profile, storage node structure, featuring increased surface area as a result of the formation of the lateral grooves.
    Type: Grant
    Filed: January 12, 2004
    Date of Patent: April 4, 2006
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bor-Wen Chan, Huan-Just Lin, Hun-Jan Tao
  • Publication number: 20060040481
    Abstract: Methods and structures for preventing salicidation are disclosed. A substrate has an gate electrode on it. Spacers are on sidewalls of the gate electrode, exposing a top portion of the gate electrode. A dielectric layer is formed above the spacers, covering the exposed top portion of the gate electrode. Methods and structures for forming source and drain salicidation are disclosed. They further salicidize source and drain regions which are adjacent to the spacers without forming salicidation on the gate electrode while salicidizing the source and drain regions. Methods and structures for forming gate electrode salicidation are also disclosed. They further form another dielectric layer covering the salicidized source and drain regions. A portion of the dielectric layer is removed so as to expose a top surface of the gate electrode. The gate electrode is then salicidized.
    Type: Application
    Filed: August 17, 2004
    Publication date: February 23, 2006
    Inventors: Bor-Wen Chan, Yu-Shen Lai
  • Publication number: 20060009001
    Abstract: Abstract of the Disclosure A method of forming a channel region for a MOSFET device in a strained silicon layer via employment of adjacent and surrounding silicon-germanium shapes, has been developed. The method features simultaneous formation of recesses in a top portion of a conductive gate structure and in portions of the semiconductor substrate not occupied by the gate structure or by dummy spacers located on the sides of the conductive gate structure. The selectively defined recesses will be used to subsequently accommodate silicon-germanium shapes, with the silicon-germanium shapes located in the recesses in the semiconductor substrate inducing the desired strained channel region. The recessing of the conductive gate structure and of semiconductor substrate portion reduces the risk of silicon-germanium bridging across the surface of sidewall spacers during epitaxial growth of the alloy layer, thus reducing the risk of gate to substrate leakage or shorts.
    Type: Application
    Filed: June 10, 2004
    Publication date: January 12, 2006
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Chun Huang, Bor-Wen Chan, Baw-Ching Perng, Lawrence Sheu, Huan-Jan Tao, Chih-Hsin Ko, Chun-Chieh Lin
  • Publication number: 20050253204
    Abstract: A method of forming a silicided gate on a substrate having active regions is provided. The method comprises forming silicide in the active regions and a portion of the gate, leaving a remaining portion of the gate unsilicided; forming a shielding layer over the active regions and gate after the forming step; forming a coating layer over portions of the shielding layer over the active regions; opening the shielding layer to expose the gate, wherein the coating layer protects the portions of the shielding layer over the active regions during the opening step; depositing a metal layer over the exposed gate; and annealing to cause the metal to react with the gate to silicidize at least a part of the remaining portion of the gate.
    Type: Application
    Filed: May 13, 2004
    Publication date: November 17, 2005
    Inventors: Bor-Wen Chan, Jyu-Horng Shieh, Hun-Jan Tao
  • Publication number: 20050245082
    Abstract: A method for removing organic material from an opening in a low k dielectric layer and above a metal layer on a substrate is disclosed. An ozone water solution comprised of one or more additives such as hydroxylamine or an ammonium salt is applied as a spray or by immersion. A chelating agent may be added to protect the metal layer from oxidation. A diketone may be added to the ozone water solution or applied in a gas or liquid phase in a subsequent step to remove any metal oxide that forms during the ozone treatment. A supercritical fluid mixture that includes CO2 and ozone can be used to remove organic residues that are not easily stripped by one of the aforementioned liquid solutions. The removal method prevents changes in the dielectric constant and refractive index of the low k dielectric layer and cleanly removes residues which improve device performance.
    Type: Application
    Filed: April 28, 2004
    Publication date: November 3, 2005
    Inventors: Baw-Ching Perng, Yi-Chen Huang, Jun-Lung Huang, Bor-Wen Chan, Peng-Fu Hsu, Hsin-Ching Shih, Lawrance Sheu, Hun-Jan Tao
  • Publication number: 20050179098
    Abstract: A new method to form metal silicide gates in the fabrication of an integrated circuit device is achieved. The method comprises forming polysilicon lines overlying a substrate with a dielectric layer therebetween. A first isolation layer is formed overlying the substrate and the sidewalls of the polysilicon lines. The first isolation layer does not overlie the top surface of the polysilicon lines. The polysilicon lines are partially etched down such that the top surfaces of the polysilicon lines are below the top surface of the first isolation layer. A metal layer is deposited overlying the polysilicon lines. A thermal anneal is used to completely convert the polysilicon lines to metal silicide gates. The unreacted metal layer is removed to complete the device.
    Type: Application
    Filed: February 17, 2004
    Publication date: August 18, 2005
    Inventors: Bor-Wen Chan, Chih-Hao Wang, Lawrance Hsu, Hun-Jan Tao
  • Publication number: 20050164503
    Abstract: A method for forming an ultra narrow semiconductive gate structure utilizes a tapered hardmask covered by an oxide liner. The tapered hardmask is formed over the semiconductive gate material by tapered etching. After the tapered hardmask structure is formed over the semiconductive material, an oxide layer is formed over the tapered hardmask. A sequence of highly selective etch operations are carried out to etch uncovered portions of the semiconductive gate material while the portions of the gate material covered by the tapered hardmask and oxide film remain unetched to form ultra narrow gate structures.
    Type: Application
    Filed: January 23, 2004
    Publication date: July 28, 2005
    Inventors: Bor-Wen Chan, Baw-Ching Perng, Ying-Tsung Chen
  • Publication number: 20050164478
    Abstract: A process for trimming a photoresist layer during the fabrication of a gate electrode in a MOSFET is described. A bilayer stack with a top photoresist layer on a thicker organic underlayer is patternwise exposed with 193 nm or 157 nm radiation to form a feature having a width w1 in the top layer. A pattern transfer through the underlayer is performed with an anisotropic etch based on H2/N2 and SO2 chemistry. The feature formed in the bilayer stack is trimmed by 10 nm or more to a width w2 by a HBr/O2/Cl2 plasma etch. The pattern transfer through an underlying gate layer is performed with a third etch based on HBr/O2/Cl2 chemistry. The underlayer is stripped by an O2 ashing with no damage to the gate electrode. Excellent profile control of the gate electrode is achieved and a larger (w1?w2) is possible than in prior art methods.
    Type: Application
    Filed: January 26, 2004
    Publication date: July 28, 2005
    Inventors: Bor-Wen Chan, Yi-Chun Huang, Baw-Ching Perng, Hun-Jan Taq
  • Publication number: 20050121750
    Abstract: A method of manufacturing a microelectronic device comprising forming a patterned feature over a substrate and employing a fluorine-containing plasma source to deposit a conformal polymer layer over the patterned feature and the substrate. The polymer layer is etched to expose the patterned feature and a portion of the substrate, thereby forming polymer spacers on opposing sides of the patterned feature.
    Type: Application
    Filed: December 5, 2003
    Publication date: June 9, 2005
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Bor-Wen Chan, Yu-I Wang, Han-Jan Tao
  • Publication number: 20040266115
    Abstract: A semiconductor device (1) has a fin (2) and a multiple gate electrode (3) over the fin (2), the multiple gate electrode (3) being a layer of gate electrode material with a substantially planar surface (13b) to support a patterned mask (14a), the mask (14a) having a uniform thickness and a planar surface controlling the patterning dimensions of the patterned mask (14a).
    Type: Application
    Filed: June 25, 2003
    Publication date: December 30, 2004
    Inventors: Bor-Wen Chan, Fang-Cheng Chen