Patents by Inventor Bor Z. Jang

Bor Z. Jang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11603316
    Abstract: Provided is a method of producing multiple isolated hollow graphene balls, comprising: (a) mixing multiple particles of a graphitic material and multiple particles of a solid polymer carrier material to form a mixture in an impacting chamber of an energy impacting apparatus; (b) operating the energy impacting apparatus to peel off graphene sheets from the graphitic material and transferring the graphene sheets to surfaces of solid polymer carrier material particles to produce graphene-coated polymer particles; (c) recovering the graphene-coated polymer particles from the impacting chamber; and (d) suspending the graphene-encapsulated polymer particles in a gaseous medium to keep the particles separated from each other while concurrently pyrolyzing the particles to thermally convert polymer into pores and carbon, wherein at least one of the graphene balls comprises a hollow core enclosed by a shell composed of graphene sheets bonded together by carbon.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: March 14, 2023
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Publication number: 20230057285
    Abstract: The disclosure provides a multi-layer prelithiated anode including (a) a conducting substrate having a first primary surface and a second primary surface; (b) a first layer of lithium metal deposited onto the first primary surface of the conducting substrate; (c) a first graphitic layer that substantially covers the first lithium metal layer; and (d) a first anode active layer deposited on a primary surface of the first graphitic layer. The first anode active layer includes an anode active material. Also provided are a lithium battery including such a prelithiated anode and a method of producing such an anode.
    Type: Application
    Filed: August 13, 2021
    Publication date: February 23, 2023
    Inventors: Aruna Zhamu, Hui He, Bor Z. Jang
  • Patent number: 11572277
    Abstract: Provided is method of producing graphene directly from a pulp, paper, or paper product, the method comprising a procedure of subjecting the pulp, paper, or paper product (preferably containing post-consumer, reclaimed, or recycled product) to a graphitization treatment at a graphitization temperature in the range of 1,500° C. to 3,400° C. (preferably >2,500° C.) in a substantially non-oxidizing environment for a length of time sufficient for converting the product to a graphene material product. Preferably and typically, the method does not involve the use of an externally added undesirable chemical (other than those paper chemicals already present in the paper product) or catalyst. The method is environmentally benign, ecologically friendly, and highly scalable.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: February 7, 2023
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 11572280
    Abstract: A method of producing a graphene suspension, comprising: (a) mixing multiple particles of a graphitic material and multiple particles of a solid carrier material to form a mixture in an impacting chamber of an energy impacting apparatus; (b) operating the energy impacting apparatus with a frequency and an intensity for a length of time sufficient for peeling off graphene sheets from the graphitic material and transferring the graphene sheets to surfaces of the carrier material particles to produce graphene-coated carrier particles inside the impacting chamber; and (c) dispersing the graphene-coated carrier particles in a liquid medium and separating the graphene sheets from the carrier material particles using ultrasonication or mechanical shearing means and removing the carrier material from the liquid medium to produce the graphene suspension. The process is fast (1-4 hours as opposed to 5-120 hours of conventional processes), environmentally benign, cost effective, and highly scalable.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: February 7, 2023
    Assignee: Global Graphene Group, Inc.
    Inventors: Hao-Hsun Chang, Aruna Zhamu, Bor Z. Jang
  • Patent number: 11566852
    Abstract: Provided is a vapor-based heat transfer apparatus (e.g. a vapor chamber or a heat pipe), comprising: a hollow structure having a hollow chamber enclosed inside a sealed envelope or container made of a thermally conductive material, a wick structure in contact with one or a plurality of walls of the hollow structure, and a working liquid within the hollow structure and in contact with the wick structure, wherein the wick structure comprises a graphene material.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: January 31, 2023
    Assignee: Global Graphene Group, Inc.
    Inventors: Yi-jun Lin, Bor Z. Jang
  • Patent number: 11560631
    Abstract: A method of producing graphene sheets from coke or coal powder, comprising: (a) forming an intercalated coke or coal compound by electrochemical intercalation conducted in an intercalation reactor, which contains (i) a liquid solution electrolyte comprising an intercalating agent; (ii) a working electrode that contains the powder in ionic contact with the liquid electrolyte, wherein the coke or coal powder is selected from petroleum coke, coal-derived coke, meso-phase coke, synthetic coke, leonardite, lignite coal, or natural coal mineral powder; and (iii) a counter electrode in ionic contact with the electrolyte, and wherein a current is imposed upon the working electrode and the counter electrode for effecting electrochemical intercalation of the intercalating agent into the powder; and (b) exfoliating and separating graphene planes from the intercalated coke or coal compound using an ultrasonication, thermal shock exposure, mechanical shearing treatment, or a combination thereof to produce isolated graphen
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: January 24, 2023
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Publication number: 20220407182
    Abstract: A flame-resistant polymer composite separator for use in a lithium battery, wherein the polymer composite separator comprises (a) a binder or matrix polymer; (b) 0.1% to 50% by weight of a lithium salt dispersed in the polymer; and (c) from 30% to 99% by weight of particles or fibers of an inorganic material or polymer fibers that are dispersed in or bonded by the polymer, wherein the polymer is a polymerization or crosslinking product of a reactive additive comprising (i) a first liquid solvent that is polymerizable, (ii) an initiator or crosslinking agent, and (iii) the lithium salt and wherein the polymer composite separator has a thickness from 50 nm to 100 ?m and a lithium ion conductivity from 10?8 S/cm to 5×10?2 S/cm at room temperature.
    Type: Application
    Filed: May 19, 2021
    Publication date: December 22, 2022
    Inventor: Bor Z. Jang
  • Publication number: 20220407183
    Abstract: A flame-resistant composite separator for use in a lithium battery, wherein the composite separator comprises at least a first layer and a second layer laminated together, wherein: (A) the first layer comprises a layer of inorganic solid electrolyte (e.g., a sintered solid structure) or a layer of polymer composite comprising 60%-99% by volume of inorganic material particles, inorganic material fibers, and/or polymer fibers dispersed in or bonded by a first polymer; and (B) the second layer comprises a second polymer and from 0.1% to 50% by weight of a lithium salt dispersed in the second polymer; wherein the first layer and the second layer each has a thickness from 20 nm to 100 ?m and a lithium-ion conductivity from 10?8 S/cm to 5×10?2 S/cm at room temperature.
    Type: Application
    Filed: June 3, 2021
    Publication date: December 22, 2022
    Applicant: Global Graphene Group, Inc.
    Inventor: Bor Z. Jang
  • Publication number: 20220384909
    Abstract: A lithium secondary battery comprising a cathode, an anode, and a thermally stable polymer composite separator disposed between the cathode and the anode, wherein the polymer composite separator comprises (i) a thermally stable polymer; (ii) from 0.1% to 30% by weight of a lithium salt dispersed in the thermally stable polymer; and (iii) from 30% to 99% by weight of particles of an inorganic material wherein the inorganic material particles are dispersed in or bonded by the thermally stable polymer and the composite separator has a thickness from 50 nm to 100 ?m and a lithium ion conductivity from 10?8 S/cm to 5×10?2 S/cm at room temperature. Also provided are the thermally stable and ion-conducting polymer composite separators and a process for producing such a separator.
    Type: Application
    Filed: May 13, 2021
    Publication date: December 1, 2022
    Inventor: Bor Z. Jang
  • Publication number: 20220384908
    Abstract: A lithium secondary battery comprising a cathode, an anode, and a thermally stable polymer composite separator disposed between said cathode and said anode, wherein said composite separator comprises a thermally stable polymer, comprising a phosphorous-containing polymer, and from 30% to 99% by weight of particles of an inorganic material electrolyte and the particles are dispersed in or bonded by the thermally stable polymer, wherein the composite separator has a thickness from 50 nm to 100 ?m and a lithium ion conductivity from 10?8 S/cm to 5×10?2 S/cm at room temperature.
    Type: Application
    Filed: May 7, 2021
    Publication date: December 1, 2022
    Inventor: Bor Z. Jang
  • Patent number: 11515540
    Abstract: A graphene foam-protected selenium cathode layer for an alkali metal-selenium cell, comprising: (a) a sheet or a roll of solid graphene foam composed of multiple pores and pore walls containing graphene sheets, wherein the graphene sheets contain a pristine graphene material having less than 0.01% by weight of non-carbon elements or a non-pristine graphene material having 0.01% to 20% by weight of non-carbon elements, wherein said non-pristine graphene is selected from graphene oxide, reduced graphene oxide, graphene fluoride, graphene chloride, graphene bromide, graphene iodide, hydrogenated graphene, nitrogenated graphene, boron-doped graphene, nitrogen-doped graphene, chemically functionalized graphene, or a combination thereof, wherein the graphene sheets are interconnected or chemically merged together without an adhesive resin; and (b) selenium coating or particles residing in the pores or bonded to the pore walls of the solid graphene foam.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: November 29, 2022
    Assignee: Global Graphene Group, Inc.
    Inventors: Hui He, Aruna Zhamu, Bor Z. Jang
  • Patent number: 11515536
    Abstract: Provided is a multivalent metal-ion battery comprising an anode, a cathode, a porous separator electronically separating the anode and the cathode, and an electrolyte in ionic contact with the anode and the cathode to support reversible deposition and dissolution of a multivalent metal, selected from Ni, Zn, Be, Mg, Ca, Ba, La, Ti, Ta, Zr, Nb, Mn, V, Co, Fe, Cd, Cr, Ga, In, or a combination thereof, at the anode, wherein the anode contains the multivalent metal or its alloy as an anode active material and the cathode comprises a cathode layer of an exfoliated graphite or carbon material recompressed to form an active layer that is oriented in such a manner that the active layer has a graphite edge plane in direct contact with the electrolyte and facing or contacting the separator.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: November 29, 2022
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 11502341
    Abstract: Provided is a battery charging system comprising (a) at least one charging circuit to charge at least one rechargeable battery cell; (b) a heat source to provide heat that is transported through a heat spreader element, implemented fully or partially inside said at least one battery cell, to heat up the battery cell to a desired temperature Tc before or during battery charging; and (c) cooling means in thermal contact with the heat spreader element configured to enable transporting internal heat of the battery cell through the heat spreader element to the cooling means when the battery cell is discharged. Charging the battery at Tc enables completion of the battery in less than 15 minutes, typically less than 10 minutes, and more typically less than 5 minutes without adversely impacting the battery structure and performance.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: November 15, 2022
    Assignee: Global Graphene Group, Inc.
    Inventors: Yu-Sheng Su, Hao-Hsun Chang, Yu-Ming Chen, Bor Z. Jang
  • Publication number: 20220359857
    Abstract: The disclosure provides a method of prelithiating an anode for a lithium-ion cell, the method comprising: (a) providing a pre-fabricated anode comprising an anode active material; (b) prelithiating the pre-fabricated anode by exposing the anode to a lithium source and an electrolyte solution, comprising a lithium salt dissolved in a liquid solvent, to enable lithium ions to intercalate into the anode active material until a level of lithium interaction from 5% to 100% of the maximum lithium storage capacity is achieved to form a prelithiated anode; and (c) introducing a protective polymer onto the prelithiated anode to prevent exposure of the prelithiated anode active material to the open air or into the anode to bond the prelithiated anode active material or to improve a structural integrity of the prelithiated anode, wherein the protective polymer has a lithium-ion conductivity from 10?8 S/cm to 5×10?2 S/cm at room temperature.
    Type: Application
    Filed: April 29, 2021
    Publication date: November 10, 2022
    Inventor: Bor Z. Jang
  • Patent number: 11495792
    Abstract: Provided is an anode active material layer for a lithium battery. This layer comprises multiple particulates of an anode active material, wherein at least a particulate is composed of one or a plurality of particles of a high-capacity anode active material being encapsulated by a thin layer of elastomeric material that has a lithium ion conductivity no less than 10?7 S/cm (preferably no less than 10?5 S/cm) at room temperature and an encapsulating shell thickness from 1 nm to 10 ?m, and wherein the high-capacity anode active material (e.g. Si, Ge, Sn, SnO2, Co3O4, etc.) has a specific capacity of lithium storage greater than 372 mAh/g (the theoretical lithium storage limit of graphite).
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: November 8, 2022
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Publication number: 20220336859
    Abstract: A method of producing a rechargeable lithium battery cell, the method comprising (a) preparing a liquid electrolyte solution comprising an ion-conducting polymer dispersed in a first liquid solvent and an optional lithium salt dissolved in the first liquid solvent; (b) impregnating the electrolyte solution into the cathode, the anode, a porous structure of the separator, or the battery cell; (c) removing the first liquid solvent; and (d) impregnating a second liquid solvent, comprising an optional lithium salt dissolved therein, into the cathode, the anode, the separator porous structure, or the battery cell; wherein the ion-conducting polymer comprises a polymer having an ion conductivity from 10?8 S/cm to 10?2 S/cm when measured at room temperature without the presence of a liquid solvent and the polymer does not occupy more than 25% by weight of the cathode, not counting a current collector weight.
    Type: Application
    Filed: April 7, 2021
    Publication date: October 20, 2022
    Inventor: Bor Z. Jang
  • Patent number: 11469415
    Abstract: Provided is a porous graphene particulate comprising a graphene shell encapsulating a porous core, wherein the porous core comprises one or a plurality of pores and pore walls and a lithium-attracting metal or sodium-attracting metal residing in the pores or deposited on pore walls; wherein the lithium-attracting or sodium-attracting metal is selected from Au, Ag, Mg, Zn, Ti, Li, Na, K, Al, Fe, Mn, Co, Ni, Sn, V, Cr, or an alloy thereof and is in an amount of 0.1% to 90% of the total particulate weight, and the shell comprises multiple single-layer or few-layer graphene sheets. Also provided is a powder mass, anode, or battery that contains one or a plurality of such porous particulates.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: October 11, 2022
    Assignee: Global Graphene Group, Inc.
    Inventor: Bor Z. Jang
  • Patent number: 11469009
    Abstract: A process for producing a highly conducting film of conductor-bonded graphene sheets that are highly oriented, comprising: (a) preparing a graphene dispersion or graphene oxide (GO) gel; (b) depositing the dispersion or gel onto a supporting solid substrate under a shear stress to form a wet layer; (c) drying the wet layer to form a dried layer having oriented graphene sheets or GO molecules with an inter-planar spacing d002 of 0.4 nm to 1.2 nm; (d) heat treating the dried layer at a temperature from 55° C. to 3,200° C. for a desired length of time to produce a porous graphitic film having pores and constituent graphene sheets or a 3D network of graphene pore walls having an inter-planar spacing d002 less than 0.4 nm; and (e) impregnating the porous graphitic film with a conductor material that bonds the constituent graphene sheets or graphene pore walls to form the conducting film.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: October 11, 2022
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 11453593
    Abstract: Provided is a vapor-based heat transfer apparatus (e.g. a vapor chamber or a heat pipe), comprising: a hollow structure having a hollow chamber enclosed inside a sealed envelope or container made of a thermally conductive material, a wick structure in contact with one or a plurality of walls of the hollow structure, and a working liquid within the hollow structure and in contact with the wick structure, wherein the wick structure comprises a graphene material and the hollow structure walls comprise an evaporator wall having a first surface plane and a condenser wall having a second surface plane, wherein multiple sheets of the graphene material in the wick structure are aligned to be substantially parallel to one another and perpendicular to at least one of the first surface plane and the second surface plane. Also provided is a process for producing this apparatus.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: September 27, 2022
    Assignee: Global Graphene Group, Inc.
    Inventors: Yi-jun Lin, Bor Z. Jang
  • Patent number: 11453594
    Abstract: A method of producing isolated graphene oxide sheets directly from a graphitic material, comprising: a) mixing multiple particles of a graphitic material, an optional oxidizing liquid, and multiple particles of a solid carrier material to form a mixture in an impacting chamber of an energy impacting apparatus; b) operating the energy impacting apparatus with a frequency and an intensity for a length of time sufficient for peeling off graphene sheets from the graphitic material and transferring the graphene sheets to surfaces of the solid carrier material particles to produce graphene-coated solid carrier particles inside the impacting chamber; and c) sequentially or concurrently oxidizing and separating the graphene sheets from the solid carrier material particle surfaces to produce isolated graphene oxide sheets. The process is fast (1-4 hours as opposed to 5-120 hours of conventional processes), has low or no water usage, environmentally benign, cost effective, and highly scalable.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: September 27, 2022
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang