Patents by Inventor Bor Z. Jang

Bor Z. Jang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11453594
    Abstract: A method of producing isolated graphene oxide sheets directly from a graphitic material, comprising: a) mixing multiple particles of a graphitic material, an optional oxidizing liquid, and multiple particles of a solid carrier material to form a mixture in an impacting chamber of an energy impacting apparatus; b) operating the energy impacting apparatus with a frequency and an intensity for a length of time sufficient for peeling off graphene sheets from the graphitic material and transferring the graphene sheets to surfaces of the solid carrier material particles to produce graphene-coated solid carrier particles inside the impacting chamber; and c) sequentially or concurrently oxidizing and separating the graphene sheets from the solid carrier material particle surfaces to produce isolated graphene oxide sheets. The process is fast (1-4 hours as opposed to 5-120 hours of conventional processes), has low or no water usage, environmentally benign, cost effective, and highly scalable.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: September 27, 2022
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Publication number: 20220302440
    Abstract: A bipolar electrode for a lithium battery, the bipolar electrode comprising: (a) a current collector comprising a conductive material foil having two opposing primary surfaces, wherein one or both of the primary surfaces is optionally coated with a layer of graphene or expanded graphite material; and (b) a negative electrode layer and a positive electrode layer respectively deposited on the two primary surfaces, wherein the positive electrode layer comprises a mixture of particles of a cathode active material and a quasi-solid or solid-state electrolyte and the electrolyte comprises a nitrile and a polymer, which is a polymerization or crosslinking product of a reactive additive comprising (i) a first liquid solvent that is polymerizable, (ii) an initiator or a curing agent, and (iii) a lithium salt. Also provided is a bipolar battery that comprises a plurality of bipolar electrodes connected in series.
    Type: Application
    Filed: March 19, 2021
    Publication date: September 22, 2022
    Inventor: Bor Z. Jang
  • Patent number: 11450487
    Abstract: A supercapacitor electrode comprises a mixture of graphene sheets and humic acid. The humic acid occupies 0.1% to 99% by weight of the mixture and the graphene sheets are selected from a pristine graphene material having essentially zero % of non-carbon elements, or a non-pristine graphene material having 0.001% to 5% by weight of non-carbon elements. The non-pristine graphene is selected from graphene oxide, reduced graphene oxide, graphene fluoride, graphene chloride, graphene bromide, graphene iodide, hydrogenated graphene, nitrogenated graphene, chemically functionalized graphene, or a combination thereof. The mixture has a specific surface area greater than 500 m2/g.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: September 20, 2022
    Assignee: Nanotek Instruments Group, LLC
    Inventors: Song-Hai Chai, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20220293958
    Abstract: A bipolar electrode for a lithium battery, the bipolar electrode comprising: (a) a current collector comprising a conductive material foil having two opposing primary surfaces, wherein one or both of the primary surfaces is optionally coated with a layer of graphene or expanded graphite material having a thickness from 5 nm to 50 ?m; and (b) a negative electrode layer and a positive electrode layer respectively disposed on the two primary surfaces, wherein the positive electrode layer comprises a mixture of particles of a cathode active material and a quasi-solid or solid-state electrolyte and the electrolyte comprises a polymer, which is a polymerization or crosslinking product of a reactive additive, wherein the reactive additive comprises (i) a first liquid solvent that is polymerizable, (ii) an initiator or curing agent, and (iii) a lithium salt. Also provided is a bipolar battery comprising a plurality of bipolar electrodes connected in series.
    Type: Application
    Filed: March 10, 2021
    Publication date: September 15, 2022
    Inventor: Bor Z. Jang
  • Publication number: 20220293955
    Abstract: An electrode for a rechargeable lithium battery, the electrode comprising an electrode active material layer comprising an electrode active material that is in physical contact with or mixed with a quasi-solid or solid-state electrolyte, wherein the electrolyte comprises a polymer, which is a polymerization or crosslinking product of a reactive additive (reactive liquid electrolyte) comprising (i) a first liquid solvent that is polymerizable, (ii) an initiator and/or curing agent, (iii) a lithium salt, and (iv) an optional second liquid solvent; wherein the first liquid solvent occupies from 1% to 99% by weight and the second solvent, if present, occupies from 0.1% to 99% by weight based on the total weight of the reactive additive; wherein the first liquid solvent has a lower flash point, a higher vapor pressure, a higher dielectric constant, or a higher solubility of the lithium salt as compared with the second liquid solvent.
    Type: Application
    Filed: March 12, 2021
    Publication date: September 15, 2022
    Inventor: Bor Z. Jang
  • Patent number: 11444339
    Abstract: Provided is a rechargeable battery comprising an anode, a cathode, an electrolyte disposed between the anode and the cathode, a protective housing that at least partially encloses the anode, the cathode and the electrolyte, a heat-spreader element disposed at least partially inside the protective housing and configured to receive heat from an external heat source at a desired heating temperature Th to heat up the battery to a desired temperature Tc for battery charging. Preferably, the heat-spreader element does not receive an electrical current from an external circuit (e.g. battery charger) to generate heat for resistance heating of the battery. Charging the battery at Tc enables completion of the battery in less than 15 minutes, typically less than 10 minutes, and more typically less than 5 minutes without adversely impacting the battery structure and performance.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: September 13, 2022
    Assignee: Global Graphene Group, Inc.
    Inventors: Yu-Sheng Su, Yu-Ming Chen, Hao-Hsun Chang, Bor Z. Jang
  • Patent number: 11437625
    Abstract: An anode for a lithium battery comprises a graphene foam structure composed of multiple pores and pore walls and Si nanowires residing in the pores. The Si nanowires are formed in situ inside the pores. The pore walls comprise a 3D network of interconnected graphene planes or stacked graphene planes having an inter-plane spacing d002 from 0.3354 nm to 0.40 nm as measured by X-ray diffraction. The Si nanowires have a diameter from 2 nm to 100 nm and a length-to-diameter aspect ratio of at least 5 and the Si nanowires are in an amount from 0.5% to 99% by weight based on the total weight of the graphene foam and the Si nanowires combined.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: September 6, 2022
    Assignee: Global Graphene Group, Inc.
    Inventors: Yu-Sheng Su, Jun Yin, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20220271335
    Abstract: A rechargeable lithium battery comprising an anode, a cathode, and a quasi-solid or solid-state electrolyte in ionic communication with the anode and the cathode, wherein the electrolyte comprises a polymer, which is an in situ polymerization or crosslinking product of a reactive additive, wherein the reactive additive comprises (i) a first liquid solvent that is polymerizable, (ii) an initiator or curing agent, (iii) a lithium salt, and (iv) a second liquid solvent; wherein the first liquid solvent has a lower flash point, a higher vapor pressure, a higher dielectric constant, or a higher solubility of the lithium salt as compared with the second liquid solvent and the polymer is present in the anode, the cathode, the separator, between the anode and the separator, or between the cathode and the separator.
    Type: Application
    Filed: February 23, 2021
    Publication date: August 25, 2022
    Inventor: Bor Z. Jang
  • Patent number: 11420872
    Abstract: Provided is a graphene foam-based sealing material comprising: (a) a graphene foam framework comprising pores and pore walls, wherein the pore walls comprise a 3D network of interconnected graphene planes or graphene sheets; and (b) a permeation-resistant binder or matrix material that coats and embraces the exterior surfaces of the graphene foam framework and/or infiltrates into pores of the graphene foam, occupying from 10% to 100% (preferably from 10% to 98% and more preferably from 20% to 90%) of the pore volume of the graphene foam framework.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: August 23, 2022
    Assignee: Global Graphene Group, Inc.
    Inventors: Yi-jun Lin, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20220263070
    Abstract: A rechargeable lithium battery comprising an anode, a cathode, a lithium-ion permeable and electrically insulating separator, and a solid-state lithium ion-transporting medium, wherein the lithium ion-transporting medium and particles of a cathode active material are combined to form a cathode active material composite layer optionally supported by a cathode current collector; wherein the cathode active material occupies at least 75% (preferably from 80% to 95%) by weight or by volume of the cathode composite layer (not counting the cathode current collector weight or volume); the first lithium ion-transporting medium comprises a material selected from graphite, graphene, carbon, a sulfonated conducting polymer, a phthalocyanine compound, an organic or organometallic cathode active material, or a combination thereof; and the first medium constitutes a 3D network of both lithium ion-conducting paths and electron-conducting paths in the cathode.
    Type: Application
    Filed: February 15, 2021
    Publication date: August 18, 2022
    Inventors: Hui He, Bor Z. Jang
  • Patent number: 11414409
    Abstract: A humic acid-bonded metal foil current collector in a battery or supercapacitor, comprising: (a) a thin metal foil having two opposed but parallel primary surfaces; and (b) a thin film of humic acid (HA) or a mixture of HA and graphene, having hexagonal carbon planes, wherein HA or both HA and graphene are chemically bonded to at least one of the two primary surfaces; wherein the thin film has a thickness from 10 nm to 10 ?m, an oxygen content from 0.01% to 10% by weight, an inter-planar spacing of 0.335 to 0.50 nm between hexagonal carbon planes, a physical density from 1.3 to 2.2 g/cm3, all hexagonal carbon planes being oriented substantially parallel to each other and parallel to the primary surfaces, exhibiting a thermal conductivity greater than 500 W/mK, and/or electrical conductivity greater than 1,500 S/cm when measured alone without the metal foil.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: August 16, 2022
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Publication number: 20220255080
    Abstract: A lithium secondary battery comprising a cathode, an anode, an elastic polymer protective layer disposed between the cathode and the anode, and a working electrolyte in ionic communication with the anode and the cathode, wherein the protective layer comprises a high-elasticity polymer having a thickness from 2 nm to 200 ?m, a lithium ion conductivity of at least 10?8 S/cm at room temperature, and a fully recoverable tensile elastic strain of at least 5% and wherein the high-elasticity polymer comprises a polymer derived from a monomer selected from the group consisting of phosphates, phosphonates, phosphonic acids, phosphorous acids, phosphites, phosphoric acids, combinations thereof, and combination thereof with phosphazenes and wherein the high-elasticity polymer is impregnated with from 0% to 90% by weight of a lithium salt, a non-aqueous liquid solvent, or a liquid electrolyte comprising a lithium salt dissolved in a non-aqueous liquid solvent.
    Type: Application
    Filed: February 8, 2021
    Publication date: August 11, 2022
    Inventor: Bor Z. Jang
  • Publication number: 20220255147
    Abstract: A lithium secondary battery comprising a cathode, an anode, and an elastic polymer protective layer disposed between the cathode and the anode, and a working electrolyte in ionic communication with the anode and the cathode, wherein the elastic polymer protective layer comprises a high-elasticity polymer having a thickness from 2 nm to 200 ?m, a lithium ion conductivity from 10?8 S/cm to 5×10?2 S/cm at room temperature, and a fully recoverable tensile elastic strain of at least 5% when measured without any additive or filler dispersed therein and wherein the high-elasticity polymer comprises a crosslinked polymer network of chains derived from a phosphazene compound and wherein the crosslinked polymer network of chains is impregnated with from 0% to 90% by weight of a liquid electrolyte.
    Type: Application
    Filed: February 8, 2021
    Publication date: August 11, 2022
    Inventor: Bor Z. Jang
  • Publication number: 20220255129
    Abstract: A rechargeable lithium battery comprising an anode, a cathode, and a quasi-solid or solid-state electrolyte in ionic communication with the anode and the cathode, wherein the electrolyte comprises a polyphosphazene polymer and a lithium salt dissolved or dispersed in the polymer, wherein the lithium salt occupies a weight fraction from 0.1% to 50% based on the total weight of the lithium salt and the polyphosphazene polymer combined; wherein the polyphosphazene polymer permeates into the anode and/or the cathode and in physical contact with the anode active material inside the anode and/or in physical contact with or chemically bonded to the cathode active material inside the cathode; and wherein the electrolyte further comprises from 0% to 50% by weight of a non-aqueous liquid solvent dispersed in the polymer, based on the total weight of the lithium salt, the polymer, and the non-aqueous liquid solvent combined.
    Type: Application
    Filed: February 2, 2021
    Publication date: August 11, 2022
    Inventor: Bor Z. Jang
  • Publication number: 20220246936
    Abstract: A composite particulate for a lithium battery, wherein the composite particulate has a diameter from 10 nm to 50 ?m and comprises one or more than one anode active material particles that are dispersed in a high-elasticity polymer matrix or encapsulated by a high-elasticity polymer shell, wherein said high-elasticity polymer matrix or shell has a recoverable elastic tensile strain no less than 5%, when measured without an additive or reinforcement dispersed therein, and a lithium ion conductivity no less than 10?8 S/cm at room temperature and wherein the high-elasticity polymer comprises a crosslinked polymer network of chains derived from a phosphazene compound.
    Type: Application
    Filed: February 3, 2021
    Publication date: August 4, 2022
    Inventor: Bor Z. Jang
  • Publication number: 20220246915
    Abstract: A composite particulate for a lithium battery, wherein the composite particulate has a diameter from 10 nm to 50 ?m and comprises one or more than one anode active material particles that are dispersed in a high-elasticity polymer matrix or encapsulated by a high-elasticity polymer shell, wherein the high-elasticity polymer matrix or shell has a recoverable elastic tensile strain no less than 5%, when measured without an additive or reinforcement dispersed therein, and a lithium ion conductivity no less than 10?8 S/cm at room temperature and wherein the high-elasticity polymer comprises a polymer derived from a monomer selected from the group consisting of vinyl sulfite, ethylene carbonate, methyl methacrylate, vinyl acetate, fluorinated monomers having unsaturation for polymerization, sulfones, sulfides, nitriles, sulfates, siloxanes, silanes, and combinations thereof.
    Type: Application
    Filed: February 4, 2021
    Publication date: August 4, 2022
    Inventor: Bor Z. Jang
  • Publication number: 20220246937
    Abstract: A composite particulate for a lithium battery, wherein the composite particulate has a diameter from 10 nm to 50 ?m and comprises one or more than one anode active material particles that are dispersed in a high-elasticity polymer matrix or encapsulated by a high-elasticity polymer shell, wherein the high-elasticity polymer matrix or shell has a recoverable elastic tensile strain no less than 5%, when measured without an additive or reinforcement dispersed therein, and a lithium ion conductivity no less than 10?8 S/cm at room temperature and wherein the high-elasticity polymer comprises a polymer derived from a monomer selected from the group consisting of phosphates, phosphonates, phosphonic acids, phosphorous acid, phosphites, phosphoric acids, combinations thereof, and combination thereof with phosphazenes. These polymers are also highly flame-resistant.
    Type: Application
    Filed: February 4, 2021
    Publication date: August 4, 2022
    Applicant: Global Graphene Group, Inc.
    Inventor: Bor Z. Jang
  • Patent number: 11401164
    Abstract: Provided is a process for producing a solid graphene foam-based sealing material. The process comprises: (a) preparing a graphene dispersion having a graphene material dispersed in a liquid medium, which contains an optional blowing agent; (b) dispensing and depositing the graphene dispersion into desired shapes and partially or completely removing the liquid medium from these shapes to form dried graphene shapes; (c) heat treating the dried graphene shapes at a first heat treatment temperature from 50° C. to 3,200° C. at a desired heating rate sufficient to induce volatile gas molecules from the non-carbon elements or to activate the blowing agent for producing the graphene foam; and (d) coating or impregnating the graphene foam with a permeation-resistant binder or matrix material to form the sealing material.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: August 2, 2022
    Assignee: Global Graphene Group, Inc.
    Inventors: Yi-jun Lin, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20220238914
    Abstract: A rechargeable lithium battery comprising an anode, a cathode, and a quasi-solid or solid-state electrolyte in ionic communication with the anode and the cathode, wherein the electrolyte comprises a polymer, which is a polymerization or crosslinking product of a reactive additive, wherein the reactive additive comprises at least one polymerizable liquid solvent (monomer), a lithium salt dissolved in the polymerizable liquid solvent, and a crosslinking agent and/or an initiator; wherein the polymerizable liquid solvent is selected from the group consisting of fluorinated carbonates, sulfones, sulfides, nitriles, phosphates, phosphites, sulfates, siloxanes, silanes, and combinations thereof; and wherein at least 70% by weight or by volume of the polymerizable liquid solvent is polymerized.
    Type: Application
    Filed: January 22, 2021
    Publication date: July 28, 2022
    Inventors: Hui He, Lu Zhang, Bor Z. Jang
  • Publication number: 20220238915
    Abstract: A rechargeable lithium battery comprising an anode, a cathode, and a quasi-solid or solid-state electrolyte in ionic communication with the anode and the cathode, wherein the electrolyte comprises a polymer comprising chains of a polyester of phosphoric acid and a lithium salt dissolved or dispersed in the polyester of phosphoric acid. The electrolyte may further comprise from 0.1% to 50% by weight of a non-aqueous liquid solvent dispersed in the polyester of phosphoric acid. The polymer may further comprise a flame-retardant and/or particles of an inorganic solid-state electrolyte. Also provided is an electrolyte composition comprising a lithium salt and an initiator and/or a crosslinking agent dissolved or dispersed in a reactive liquid medium comprising a reactive monomer or oligomer that is a precursor to a polyester of phosphoric acid.
    Type: Application
    Filed: January 25, 2021
    Publication date: July 28, 2022
    Inventor: Bor Z. Jang