Patents by Inventor Boris Kozinsky

Boris Kozinsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10741894
    Abstract: A metal/air battery includes an oxygen management system that delivers oxygen to the battery during a discharge cycle. The oxygen management system includes an oxygen separations unit and an oxygenated gas supply reservoir that are fluidly coupled to a positive electrode of the battery via a valve system. The valve system selectively places the oxygen separations unit and the oxygenated gas supply reservoir in fluid communication with the positive electrode during the discharge cycle. The oxygen management system also includes a compressor with an outlet fluidly coupled to the oxygenated gas supply reservoir and an inlet fluidly connected to the oxygen separations unit via the valve system. The valve system selectively places the oxygen separations unit in fluid communication with the oxygenated gas supply reservoir during one or more of the discharge cycle and a charge cycle of the battery.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: August 11, 2020
    Assignee: Robert Bosch GmbH
    Inventors: John F. Christensen, Aleksandar Kojic, Boris Kozinsky
  • Patent number: 10734677
    Abstract: A new class of electrolyte salts that contain substituted imidazole or benzimidazole groups is described. The salts can be used in non-aqueous electrolytes in lithium or other alkali battery cells. When used with a lithium metal anode, the salts are electrochemically stable up to 5V vs. Li/Li+.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: August 4, 2020
    Assignee: ROBERT BOSCH GMBH
    Inventors: Jin Yang, Hany Basam Eitouni, Malar Azagarsamy, Boris Kozinsky, Georgy Samsonidze, Nicola Molinari
  • Publication number: 20200212455
    Abstract: An anticorrosive and conductive substrate includes a bulk portion and a surface portion including a magnesium titanium material having a formula (I) TixMg1-xOy (I), where x is a number from 0 to ?1 and y is a number from 1 to ?2, and wherein at least about 50% of the magnesium titanium material has a cubic crystal structure, and wherein the magnesium titanium material is configured to impart anticorrosive and conductive properties to the substrate.
    Type: Application
    Filed: December 27, 2018
    Publication date: July 2, 2020
    Inventors: Mordechai KORNBLUTH, Soo KIM, Jonathan MAILOA, Lei CHENG, Georgy SAMSONIDZE, Boris KOZINSKY, Nathan CRAIG, Saravanan KUPPAN, Sondra HELLSTROM, Jake CHRISTENSEN
  • Publication number: 20200207646
    Abstract: A desalination battery includes a container configured to contain a saline water solution having a first concentration c1 of dissolved salts; first and second intercalation hosts, arranged to be in fluid communication with the saline water solution, at least the first intercalation host including expanded graphite having a plurality of graphene layers with an interlayer spacing between the graphene layers in z-direction greater than 0.34 nm; and a power source configured to supply electric current to the first and second intercalation hosts such that the first and second intercalation hosts reversibly store and release cations and anions from the saline water solution located between the plurality of graphene layers to generate a fresh water solution having a second concentration c2 of dissolved salts and a brine solution having a third concentration c3 of dissolved salts within the container such that c3>c1>c2.
    Type: Application
    Filed: December 27, 2018
    Publication date: July 2, 2020
    Inventors: Soo KIM, Jonathan MAILOA, Mordechai KORNBLUTH, Georgy SAMSONIDZE, Michael METZGER, Saravanan KUPPAN, Sondra HELLSTROM, Boris KOZINSKY, Nathan CRAIG
  • Publication number: 20200167439
    Abstract: A computational method for simulating the motion of elements within a multi-element system using a neural network force field (NNFF). The method includes receiving a combination of a number of rotationally-invariant features and a number of rotationally-covariant features of a local environment of the multi-element system; and predicting a force vector for each element within the multi-element system based on the combination of the number of rotationally-invariant features, the number of rotationally-covariant features, and the NNFF, to obtain a simulated motion of the elements within the multi-element system.
    Type: Application
    Filed: November 28, 2018
    Publication date: May 28, 2020
    Inventors: Jonathan Mailoa, Mordechai Kornbluth, Georgy Samsonidze, Boris Kozinsky, Nathan Craig
  • Publication number: 20200131058
    Abstract: A desalination device includes a container, first and second electrodes, an anion exchange membrane (AEM), and a power source. The container contains saline water that has an elevated concentration of dissolved salts. The AEM separates the container into first and second compartments into which the first and second electrodes, respectively, are arranged. The AEM has a continuous porous structure and a plurality of negatively-charged oxygen functional groups coupled to the porous structure. The power source is configured to selectively apply a voltage to one of the first and second electrodes. The AEM has a selective permeability when the voltage is applied such that cations in the saline water solution have a first diffusion rate d1 therethrough and anions in the saline water solution have a second diffusion rate d2 therethrough. The first diffusion rate d1 is less than the second diffusion rate d2 and greater than or equal to zero.
    Type: Application
    Filed: October 11, 2019
    Publication date: April 30, 2020
    Inventors: Soo Kim, Jonathan Mailoa, Mordechai Kornbluth, Georgy Samsonidze, Michael Metzger, Saravannan Kuppan, Sondra Hellstrom, Boris Kozinsky, Nathan Craig
  • Publication number: 20200123027
    Abstract: A water softening device includes a container configured to contain water, first and second electrodes arranged in fluid communication with the water, and a power source. The first electrode includes a conversion material that has a first composition and a second composition coexisting with the first composition. The first composition includes calcium ions bonded thereto and the second composition includes sodium ions bonded thereto. The power source supplies current in a first operating state such that the second composition exchanges sodium ions for calcium ions in the water to generate a soft water solution. The first and second electrodes are connected in a second operating state such that the first composition exchanges calcium ions for sodium ions in the water to generate a wastewater solution. The conversion material undergoes a reversible conversion reaction to convert between the first and second compositions within the water stability window.
    Type: Application
    Filed: October 2, 2019
    Publication date: April 23, 2020
    Inventors: Mordechai C. Kornbluth, Jonathan Mailoa, Soo Kim, Georgy Samsonidze, Boris Kozinsky, Saravanan Kuppan, Sondra Hellstrom, Nathan Craig
  • Publication number: 20200123029
    Abstract: A device for removing chloride-containing salts from water includes a container configured to contain saline water, a first electrode arranged in fluid communication with the saline water, and a power source. The first electrode includes a conversion material that is substantially insoluble in the saline water and has a composition that includes at least two or more of aluminum, chlorine, copper, iron, oxygen, and potassium. The composition varies over a range with respect to a quantity of chloride ions per formula unit. The power source supplies current to the first electrode in a first operating state so as to induce a reversible conversion reaction in which the conversion material bonds to the chloride ions in the saline water to generate a treated water solution. The conversion material dissociates the chloride ions therefrom into the saline water solution in a second operating state to generate a wastewater solution.
    Type: Application
    Filed: October 8, 2019
    Publication date: April 23, 2020
    Inventors: Mordechai C. Kornbluth, Jonathan Mailoa, Soo Kim, Georgy Samsonidze, Boris Kozinsky, Saravanan Kuppan, Sondra Hellstrom, Nathan Craig
  • Publication number: 20200123028
    Abstract: A desalination battery includes a first electrode, a second electrode, an intercalation compound contained in the first electrode, a container configured to contain a saline water solution, and a power source. The intercalation compound includes at least one of a metal oxide, a metalloid oxide, a metal oxychloride, a metalloid oxychloride, and a hydrate thereof with each having a ternary or higher order. The first and second electrodes are configured to be arranged in fluid communication with the saline water solution. The power source is configured to supply electric current to the first and second electrodes in different operating states to induce a reversible intercalation reaction within the intercalation compound. The intercalation compound reversibly stores and releases target anions from the saline water solution to generate a fresh water solution in one operating state and a wastewater solution in another operating state.
    Type: Application
    Filed: October 7, 2019
    Publication date: April 23, 2020
    Inventors: Soo Kim, Mordechai Kornbluth, Jonathan Mailoa, Georgy Samsonidze, Michael Metzger, Saravanan Kuppan, Sondra Hellstrom, Boris Kozinsky, Nathan Craig
  • Patent number: 10629793
    Abstract: A thermoelectric generator includes a hot side heat exchanger, a cold side heat exchanger, a plurality of n-type semiconductor legs arranged between the hot side heat exchanger and the cold side heat exchanger, and a plurality of p-type semiconductor legs arranged between the hot side heat exchanger and the cold side heat exchanger and alternating electrically in series with the plurality of n-type semiconductor legs. At least one of the plurality of n-type semiconductor legs and the plurality of p-type semiconductor legs is formed of an alloy having a half-Heusler structure and comprising Si and Sn with molar fractions of x Sn and 1?x Si, and x is less than 1.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: April 21, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Georgy Samsonidze, Boris Kozinsky
  • Patent number: 10573922
    Abstract: An electrochemical cell in one embodiment includes an anode including a form of lithium, a cathode, and a composite electrolyte structure positioned between the anode and the cathode, the composite electrolyte structure configured to conduct lithium ions while being electronically insulating, and exhibiting a high polarizability of localized charges.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: February 25, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Timm Lohmann, Paul Albertus, John F. Christensen, Boris Kozinsky
  • Publication number: 20190393545
    Abstract: New poly(pyrocarbonate)-based polymers have been synthesized. When these polymers are combined with electrolyte salts, such polymer electrolytes have shown excellent electrochemical oxidation stability in lithium battery cells. Their stability along with their excellent ionic transport properties make them especially suitable as electrolytes in high energy density lithium battery cells.
    Type: Application
    Filed: June 29, 2018
    Publication date: December 26, 2019
    Inventors: Malar Azagarsamy, Kulandaivelu Sivanandan, Hany Basam Eitouni, Jonathan P. Mailoa, Georgy Samsonidze, Boris Kozinsky
  • Patent number: 10490850
    Abstract: New poly(ketone)-based polymers have been synthesized. When these polymers are combined with electrolyte salts, such polymer electrolytes have shown excellent electrochemical oxidation stability in lithium battery cells. Their stability along with their excellent ionic transport properties make them especially suitable as electrolytes in high energy density lithium battery cells.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: November 26, 2019
    Assignees: SEEO. INC, Robert Bosch GmbH
    Inventors: Malar Azagarsamy, Kulandaivelu Sivanandan, Hany Basam Eitouni, Jonathan P. Mailoa, Georgy Samsonidze, Karim R. Gadelrab, Boris Kozinsky
  • Patent number: 10439121
    Abstract: A thermoelectric power generation (TEG) unit configured to be integrated into the exhaust system of a vehicle includes a plurality of thermoelectric power generator modules, each comprising an electrically interconnected plurality of p-type and n-type thermoelectric material legs, each leg extending between a substrate on a hot side and a substrate on a cold side of the module, wherein the thermoelectric materials for the legs are half-Heusler compounds having a thermoelectric figure of merit (ZT) greater than 1.0.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: October 8, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Georgy Samsonidze, Boris Kozinsky
  • Publication number: 20190190067
    Abstract: New poly(ketone)-based polymers have been synthesized. When these polymers are combined with electrolyte salts, such polymer electrolytes have shown excellent electrochemical oxidation stability in lithium battery cells. Their stability along with their excellent ionic transport properties make them especially suitable as electrolytes in high energy density lithium battery cells.
    Type: Application
    Filed: December 19, 2017
    Publication date: June 20, 2019
    Inventors: Malar Azagarsamy, Kulandaivelu Sivanandan, Hany Basam Eitouni, Jonathan P. Mailoa, Georgy Samsonidze, Karim R. Gadelrab, Boris Kozinsky
  • Patent number: 10312515
    Abstract: Among other things, the present disclosure provides a particle comprising a form of sulfur and/or lithium sulfide (Li2S) that is doped with a group VIA element, such as selenium (e.g. Se34), tellurium (e.g. Te52), or polonium (e.g. Po84). The present disclosure also provides a cell comprising a negative electrode, a separator, and a positive electrode comprising the particles of the present disclosure.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: June 4, 2019
    Assignee: Robert Bosch GmbH
    Inventors: John F. Christensen, Boris Kozinsky, Aleksandar Kojic
  • Publication number: 20190131653
    Abstract: New poly(anhydride)-based polymers have been synthesized. When these polymers are combined with electrolyte salts, such polymer electrolytes have shown excellent electrochemical oxidation stability in lithium battery cells. Their stability along with their excellent ionic transport properties make them especially suitable as electrolytes in high energy density lithium battery cells.
    Type: Application
    Filed: December 12, 2017
    Publication date: May 2, 2019
    Inventors: Malar Azagarsamy, Kulandaivelu Sivanandan, Hany Basam Eitouni, Jonathan P. Mailoa, Georgy Samsonidze, Karim R. Gadelrab, Boris Kozinsky
  • Patent number: 10218028
    Abstract: In accordance with one embodiment an electrochemical cell system includes a housing, at least one electrochemical cell within the housing and including an anode including a form of lithium, and an ionic liquid electrolyte within a cathode, the cathode separated from the anode by a solid separator impervious to the ionic liquid electrolyte, a temperature sensor within the housing, and an environmental controller at least partially positioned within the housing and configured to maintain a temperature within the housing at least 50° C. above ambient based upon input from the temperature sensor.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: February 26, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Paul Albertus, John F. Christensen, Timm Lohmann, Boris Kozinsky
  • Publication number: 20190036120
    Abstract: A battery, in particular a Lithium-ion battery, includes a cathode, anode, and electrolyte. The cathode includes a first substrate with solid cathode material, and a first amorphous coating above the first substrate that acts as a first artificial solid-electrolyte interface (“SEI”) layer for the first substrate. The anode includes a second substrate with solid anode material, and a second amorphous coating above the second substrate that acts as a second artificial SEI layer for the second substrate. The electrolyte is disposed directly between the first and second amorphous coatings. A method of producing battery includes using low temperature atomic layer deposition processes to deposit material on first and second substrates, respectively, to form first and second amorphous coatings. The method further includes arranging an electrolyte directly between the first and second amorphous coatings in order to form a battery.
    Type: Application
    Filed: July 26, 2018
    Publication date: January 31, 2019
    Inventors: Mordechai Kornbluth, Jonathan Mailoa, Boris Kozinsky, Georgy Samsonidze, John F. Christensen
  • Patent number: 10170755
    Abstract: An electrochemical cell in one embodiment includes a first negative electrode including a form of lithium, a positive electrode, and a first separator positioned between the first negative electrode and the positive electrode, wherein the positive electrode includes a plurality of coated small grains of Li2S.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: January 1, 2019
    Assignee: Robert Bosch GmbH
    Inventors: John F. Christensen, Paul Albertus, Timm Lohmann, Boris Kozinsky, Aleksandar Kojic