Patents by Inventor Bowei Zhang

Bowei Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10582178
    Abstract: An active depth imaging system and method of operating the same captures illuminator-on and illuminator-off image data with each of a first and second imager. The illuminator-on image data includes information representing an imaged scene and light emitted from an illuminator and reflected off of objects within the imaged scene. The illuminator-off image data includes information representing the imaged scene without the light emitted from the illuminator. For each image set captured by the first and second imagers, illuminator-off image data is subtracted from the illuminator-on image data to identify the illuminated light within the scene. The depth of an object at which the light is incident on then is determined by the subtracted image data of the first and second imagers.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: March 3, 2020
    Assignee: OmniVision Technologies, Inc.
    Inventors: Zheng Yang, Eiichi Funatsu, Sohei Manabe, Keiji Mabuchi, Dajiang Yang, Duli Mao, Bowei Zhang
  • Patent number: 10451551
    Abstract: A method for high-throughput assay processing includes (a) modulating temperature of a plurality of samples disposed in a respective plurality of fluidic channels on an image sensor wafer, including a plurality of image sensors, by heating the image sensor wafer using a heating module thermally coupled with the image sensor wafer, to control reaction dynamics in the samples, and (b) capturing a plurality of fluorescence images of the samples, using the plurality of image sensors, to detect one or more components of the plurality of samples. A method for manufacturing a high-throughput fluorescence imaging system with sample heating capability includes (a) bonding a fluidic wafer, including a plurality of recesses, to an image sensor wafer including a plurality of image sensors, and (b) bonding a heating module, including a heater for generating heat, to the image sensor wafer to thermally couple the heater and the image sensor wafer.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: October 22, 2019
    Assignee: OmniVision Technologies, Inc.
    Inventor: Bowei Zhang
  • Patent number: 10312391
    Abstract: An avalanche photodiode has a first diffused region of a first diffusion type overlying at least in part a second diffused region of a second diffusion type; and a first minority carrier sink region disposed within the first diffused region, the first minority carrier sink region of the second diffusion type and electrically connected to the first diffused region. In particular embodiments, the first diffusion type is N-type and the second diffusion type is P-type, and the device is biased so that a depletion zone having avalanche multiplication exists between the first and second diffused regions.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: June 4, 2019
    Assignee: OmniVision Technologies, Inc.
    Inventors: Gang Chen, Duli Mao, Vincent Venezia, Dyson H. Tai, Bowei Zhang
  • Patent number: 10153310
    Abstract: A photon detection device includes a single photon avalanche diode (SPAD) disposed in a semiconductor layer. A guard ring structure is disposed in the semiconductor layer surrounding the SPAD to isolate the SPAD. A well region is disposed in the semiconductor layer surrounding the guard ring structure and disposed along an outside perimeter of the photon detection device. A contact region is disposed in the well region only in a corner region of the outside perimeter such that there is no contact region disposed along side regions of the outside perimeter. A distance between an inside edge of the guard ring structure and the contact region in the corner region of the outside perimeter is greater than a distance between the inside edge of the guard ring structure and the side regions of the outside perimeter such that an electric field distribution is uniform around the photon detection device.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: December 11, 2018
    Assignee: OmniVision Technologies, Inc.
    Inventors: Bowei Zhang, Vincent Venezia, Gang Chen, Dyson H. Tai, Duli Mao
  • Patent number: 10141458
    Abstract: A photon detection device includes a single photon avalanche diode (SPAD) including a multiplication junction defined at an interface between n doped and p doped layers of the SPAD in a first region of a semiconductor layer. A vertical gate structure surrounds the SPAD in the semiconductor layer to isolate the SPAD in the first region from a second region of the semiconductor layer on an opposite side of the vertical gate structure. The SPAD laterally extends within the first region of semiconductor layer to the vertical gate structure. An inversion layer is generated in the SPAD around a perimeter of the SPAD proximate to the vertical gate structure in response to a gate bias voltage coupled to the vertical gate structure. The inversion layer isolates the SPAD from the second region of the semiconductor layer on the opposite side of the vertical gate structure.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: November 27, 2018
    Assignee: OmniVision Technologies, Inc.
    Inventors: Bowei Zhang, Duli Mao
  • Publication number: 20180124372
    Abstract: An active depth imaging system and method of operating the same captures illuminator-on and illuminator-off image data with each of a first and second imager. The illuminator-on image data includes information representing an imaged scene and light emitted from an illuminator and reflected off of objects within the imaged scene. The illuminator-off image data includes information representing the imaged scene without the light emitted from the illuminator. For each image set captured by the first and second imagers, illuminator-off image data is subtracted from the illuminator-on image data to identify the illuminated light within the scene. The depth of an object at which the light is incident on then is determined by the subtracted image data of the first and second imagers.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 3, 2018
    Inventors: Zheng Yang, Eiichi Funatsu, Sohei Manabe, Keiji Mabuchi, Dajiang Yang, Duli Mao, Bowei Zhang
  • Publication number: 20180097132
    Abstract: An avalanche photodiode has a first diffused region of a first diffusion type overlying at least in part a second diffused region of a second diffusion type; and a first minority carrier sink region disposed within the first diffused region, the first minority carrier sink region of the second diffusion type and electrically connected to the first diffused region. In particular embodiments, the first diffusion type is N-type and the second diffusion type is P-type, and the device is biased so that a depletion zone having avalanche multiplication exists between the first and second diffused regions.
    Type: Application
    Filed: October 4, 2016
    Publication date: April 5, 2018
    Inventors: Gang CHEN, Duli MAO, Vincent VENEZIA, Dyson H. TAI, Bowei ZHANG
  • Publication number: 20180026147
    Abstract: A photon detection device includes a single photon avalanche diode (SPAD) including a multiplication junction defined at an interface between n doped and p doped layers of the SPAD in a first region of a semiconductor layer. A vertical gate structure surrounds the SPAD in the semiconductor layer to isolate the SPAD in the first region from a second region of the semiconductor layer on an opposite side of the vertical gate structure. The SPAD laterally extends within the first region of semiconductor layer to the vertical gate structure. An inversion layer is generated in the SPAD around a perimeter of the SPAD proximate to the vertical gate structure in response to a gate bias voltage coupled to the vertical gate structure. The inversion layer isolates the SPAD from the second region of the semiconductor layer on the opposite side of the vertical gate structure.
    Type: Application
    Filed: July 21, 2016
    Publication date: January 25, 2018
    Inventors: Bowei Zhang, Duli Mao
  • Publication number: 20180019268
    Abstract: A photon detection device includes a single photon avalanche diode (SPAD) disposed in a semiconductor layer. A guard ring structure is disposed in the semiconductor layer surrounding the SPAD to isolate the SPAD. A well region is disposed in the semiconductor layer surrounding the guard ring structure and disposed along an outside perimeter of the photon detection device. A contact region is disposed in the well region only in a corner region of the outside perimeter such that there is no contact region disposed along side regions of the outside perimeter. A distance between an inside edge of the guard ring structure and the contact region in the corner region of the outside perimeter is greater than a distance between the inside edge of the guard ring structure and the side regions of the outside perimeter such that an electric field distribution is uniform around the photon detection device.
    Type: Application
    Filed: July 18, 2016
    Publication date: January 18, 2018
    Inventors: Bowei Zhang, Vincent Venezia, Gang Chen, Dyson H. Tai, Duli Mao
  • Publication number: 20170167978
    Abstract: A method for high-throughput assay processing includes (a) modulating temperature of a plurality of samples disposed in a respective plurality of fluidic channels on an image sensor wafer, including a plurality of image sensors, by heating the image sensor wafer using a heating module thermally coupled with the image sensor wafer, to control reaction dynamics in the samples, and (b) capturing a plurality of fluorescence images of the samples, using the plurality of image sensors, to detect one or more components of the plurality of samples. A method for manufacturing a high-throughput fluorescence imaging system with sample heating capability includes (a) bonding a fluidic wafer, including a plurality of recesses, to an image sensor wafer including a plurality of image sensors, and (b) bonding a heating module, including a heater for generating heat, to the image sensor wafer to thermally couple the heater and the image sensor wafer.
    Type: Application
    Filed: January 23, 2017
    Publication date: June 15, 2017
    Inventor: Bowei Zhang
  • Patent number: 9628735
    Abstract: An imaging system with single-photon-avalanche-diodes (SPADs) and sensor translation for capturing a plurality of first images to enable generation of an enhanced-resolution image includes (a) an image sensor with SPAD pixels for capturing the plurality of first images at a plurality of spatially shifted positions of the image sensor, respectively, and (b) an actuator for translating the image sensor, parallel to its light receiving surface, to place the image sensor at the plurality of spatially shifted positions. A method for capturing a plurality of first images that enable composition of an enhanced-resolution image includes (a) translating an image sensor parallel to its light receiving surface to place the image sensor at a plurality of spatially shifted positions, and (b) capturing, using SPAD pixels implemented in pixel array of the image sensor, the plurality of first images at the plurality of spatially shifted positions, respectively.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: April 18, 2017
    Assignee: OmniVision Technologies, Inc.
    Inventors: Bowei Zhang, Ming-Kai Hsu
  • Patent number: 9574991
    Abstract: A high-throughput fluorescence imaging system with sample heating capability includes an image sensor wafer with a plurality of image sensors for fluorescence imaging a plurality of samples disposed in a respective plurality of fluidic channels on the image sensor wafer. The high-throughput fluorescence imaging system further includes a heating module, thermally coupled with the image sensor wafer, for heating the samples. A method for high-throughput assay processing includes modulating temperature of a plurality of samples disposed in a respective plurality of fluidic channels on an image sensor wafer by heating the image sensor wafer, using a heating module thermally coupled with the image sensor wafer, to control reaction dynamics in the samples; and capturing a plurality of fluorescence images of the samples, using a respective plurality of image sensors of the image sensor wafer, to detect one or more components of the plurality of samples.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: February 21, 2017
    Assignee: OmniVision Technologies, Inc.
    Inventor: Bowei Zhang
  • Publication number: 20160373676
    Abstract: An imaging system with single-photon-avalanche-diodes (SPADs) and sensor translation for capturing a plurality of first images to enable generation of an enhanced-resolution image includes (a) an image sensor with SPAD pixels for capturing the plurality of first images at a plurality of spatially shifted positions of the image sensor, respectively, and (b) an actuator for translating the image sensor, parallel to its light receiving surface, to place the image sensor at the plurality of spatially shifted positions. A method for capturing a plurality of first images that enable composition of an enhanced-resolution image includes (a) translating an image sensor parallel to its light receiving surface to place the image sensor at a plurality of spatially shifted positions, and (b) capturing, using SPAD pixels implemented in pixel array of the image sensor, the plurality of first images at the plurality of spatially shifted positions, respectively.
    Type: Application
    Filed: June 22, 2015
    Publication date: December 22, 2016
    Inventors: Bowei Zhang, Ming-Kai Hsu
  • Publication number: 20160116409
    Abstract: A color-sensitive image sensor with embedded microfluidics includes a silicon substrate having (a) at least one recess partly defining at least one embedded microfluidic channel and (b) a plurality of photosensitive regions for generating position-sensitive electrical signals in response to light from the at least one recess, wherein at least two of the photosensitive regions are respectively located at at least two mutually different depth ranges, relative to the at least one recess, to provide color information. A wafer-level manufacturing method produces a plurality of such color-sensitive image sensors. A method for generating a color image of a fluidic sample includes performing imaging, onto a plurality of photosensitive regions of a silicon substrate, of a fluidic sample deposited in a microfluidic channel embedded in the silicon substrate, and generating color information based upon penetration depth of light into the silicon substrate.
    Type: Application
    Filed: October 28, 2014
    Publication date: April 28, 2016
    Inventors: Dominic Massetti, Bowei Zhang
  • Publication number: 20160103068
    Abstract: A high-throughput fluorescence imaging system with sample heating capability includes an image sensor wafer with a plurality of image sensors for fluorescence imaging a plurality of samples disposed in a respective plurality of fluidic channels on the image sensor wafer. The high-throughput fluorescence imaging system further includes a heating module, thermally coupled with the image sensor wafer, for heating the samples. A method for high-throughput assay processing includes modulating temperature of a plurality of samples disposed in a respective plurality of fluidic channels on an image sensor wafer by heating the image sensor wafer, using a heating module thermally coupled with the image sensor wafer, to control reaction dynamics in the samples; and capturing a plurality of fluorescence images of the samples, using a respective plurality of image sensors of the image sensor wafer, to detect one or more components of the plurality of samples.
    Type: Application
    Filed: October 14, 2014
    Publication date: April 14, 2016
    Inventor: Bowei Zhang
  • Patent number: 9160949
    Abstract: A photon detection device includes a photodiode having a planar junction disposed in a first region of semiconductor material. A deep trench isolation (DTI) structure is disposed in the semiconductor material. The DTI structure isolates the first region of the semiconductor material on one side of the DTI structure from a second region of the semiconductor material on an other side of the DTI structure. The DTI structure includes a dielectric layer lining an inside surface of the DTI structure and doped semiconductor material disposed over the dielectric layer inside the DTI structure. The doped semiconductor material disposed inside the DTI structure is coupled to a bias voltage to isolate the photodiode in the first region of the semiconductor material from the second region of the semiconductor material.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: October 13, 2015
    Assignee: OmniVision Technologies, Inc.
    Inventors: Bowei Zhang, Zhiqiang Lin
  • Patent number: 9116145
    Abstract: A flexible IC/microfluidic hybrid integration and packaging method and resulting device. A single flexible elastomer substrate, such as polydimethylsiloxane (PDMS), has dedicated microchannels filled with liquid metals (or low melting point solders) to provide electrical interconnects to a solid-state IC die, such as CMOS, and additional microchannels for hybrid integration with microfluidics without performing any post-processing on the IC die. The liquid metal used can be a gallium-indium-tin eutectic alloy (also called Galinstan).
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: August 25, 2015
    Assignee: The George Washington University
    Inventors: Zhenyu Li, Mona E. Zaghloul, Bowei Zhang, Can E. Korman
  • Publication number: 20140291481
    Abstract: A photon detection device includes a photodiode having a planar junction disposed in a first region of semiconductor material. A deep trench isolation (DTI) structure is disposed in the semiconductor material. The DTI structure isolates the first region of the semiconductor material on one side of the DTI structure from a second region of the semiconductor material on an other side of the DTI structure. The DTI structure includes a dielectric layer lining an inside surface of the DTI structure and doped semiconductor material disposed over the dielectric layer inside the DTI structure. The doped semiconductor material disposed inside the DTI structure is coupled to a bias voltage to isolate the photodiode in the first region of the semiconductor material from the second region of the semiconductor material.
    Type: Application
    Filed: April 1, 2013
    Publication date: October 2, 2014
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Bowei Zhang, Zhiqiang Lin
  • Patent number: 8847117
    Abstract: There is described a method for stabilizing a post-trimming resistance of a thermally isolated electrical component made from a thermally mutable material, the method comprising: generating at least one heating pulse, the at least one heating pulse having an initial amplitude corresponding to a trimming temperature, a slope corresponding to a given cooling rate and a duration corresponding to a given cooling time; and applying the at least one heating pulse to one of the thermally isolated electrical component and a heating device in heat transfer communication with the thermally isolated electrical component, after a trimming process, in order to cause the electrical component to cool in accordance with the given cooling rate, the given cooling rate being slower than a passive cooling rate determined by the thermal isolation of the electrical component.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: September 30, 2014
    Assignee: Sensortechnics GmbH
    Inventors: Oleg Grudin, Yougui Liao, Leslie M. Landsberger, Gennadiy Frolov, Lyudmila Grudina, Gerald Arzoumanian, Saed Salman, Tommy Tsang, Bowei Zhang
  • Publication number: 20130243655
    Abstract: A flexible IC/microfluidic hybrid integration and packaging method and resulting device. A single flexible elastomer substrate, such as polydimethylsiloxane (PDMS), has dedicated microchannels filled with liquid metals (or low melting point solders) to provide electrical interconnects to a solid-state IC die, such as CMOS, and additional microchannels for hybrid integration with microfluidics without performing any post-processing on the IC die. The liquid metal used can be a gallium-indium-tin eutectic alloy (also called Galinstan).
    Type: Application
    Filed: December 14, 2012
    Publication date: September 19, 2013
    Applicant: The George Washington University
    Inventors: Zhenyu LI, Mona E. ZAGHLOUL, Bowei ZHANG, Can E. KORMAN