Patents by Inventor Bradley P. Smith

Bradley P. Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100130008
    Abstract: In one embodiment, a method of forming a via includes forming an first opening in the semiconductor substrate, wherein the first opening has a bottom and sidewalls, forming a sacrificial fill in the first opening, forming a dielectric layer over the sacrificial fill, forming a second opening in the dielectric layer, wherein the second opening is over the sacrificial fill, removing the sacrificial fill from the first opening after forming the second opening, and forming a conductive material in the first opening and second opening.
    Type: Application
    Filed: November 25, 2008
    Publication date: May 27, 2010
    Inventor: Bradley P. Smith
  • Patent number: 7589550
    Abstract: A test circuit tests a device under test (DUT) uses a first switching device and a second switching device. The device under test (DUT) has a terminal for receiving a test signal. The first switching device has an output terminal for use in coupling the test signal to the terminal of the DUT when the DUT is being tested. The first switching device is high impedance when the DUT is not being tested. The second switching device is high impedance when the DUT is being tested and couples a bias control signal to the output terminal of the first switching device when the DUT is not being tested. The bias control signal substantially tracks the test signal. Leakage from the first switching device when other DUTs are being tested is greatly reduced because the bias control signal results in little or no bias across the first switching device.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: September 15, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Bradley P. Smith
  • Publication number: 20090066359
    Abstract: A test circuit tests a device under test (DUT) uses a first switching device and a second switching device. The device under test (DUT) has a terminal for receiving a test signal. The first switching device has an output terminal for use in coupling the test signal to the terminal of the DUT when the DUT is being tested. The first switching device is high impedance when the DUT is not being tested. The second switching device is high impedance when the DUT is being tested and couples a bias control signal to the output terminal of the first switching device when the DUT is not being tested. The bias control signal substantially tracks the test signal. Leakage from the first switching device when other DUTs are being tested is greatly reduced because the bias control signal results in little or no bias across the first switching device.
    Type: Application
    Filed: September 7, 2007
    Publication date: March 12, 2009
    Inventor: Bradley P. Smith
  • Publication number: 20090020849
    Abstract: An electronic device can include electronic components and an insulating layer overlying the electronic components. The electronic device can also include a capacitor overlying the insulating layer, wherein the capacitor includes a first electrode and a second electrode. The second electrode can include an opening, wherein from a top view, a defect lies within the opening. In another aspect, a process of forming an electronic device can include forming a first capacitor electrode layer over a substrate, forming a dielectric layer over the first capacitor electrode layer, and forming a second capacitor electrode layer over the dielectric layer. The process can also include detecting a defect and removing a first portion of the second capacitor electrode layer corresponding to the defect, wherein a second portion of the second capacitor electrode layer remains over the dielectric layer.
    Type: Application
    Filed: July 20, 2007
    Publication date: January 22, 2009
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Bradley P. Smith, Edward O. Travis
  • Patent number: 7353953
    Abstract: Packaged fluid receptacles include: a plurality of fluid receptacles arranged one next to the other to form a composite structure having a top surface, bottom surface and end walls at a first end and a second end and having a longitudinal axis which extends through the end walls; and a removable support which contacts at least the top surface, bottom surface and end walls, the removable support including an attachment for applying a force to remove the support, preferably in a direction along the longitudinal axis. In a preferred embodiment, the support is one-piece and has a single attachment. Preferably, the packaged fluid receptacles are cuvettes usable in a clinical analyzer.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: April 8, 2008
    Assignee: Ortho-Clinical Diagnostics, Inc.
    Inventors: Davis Freeman, III, Robert Novick, Bradley P. Smith
  • Patent number: 7238579
    Abstract: A semiconductor device that has a common border between P and N wells is susceptible to photovoltaic current that is believed to be primarily generated from photons that strike this common border. Photons that strike the border are believed to create electron/hole pairs that separate when created at the PN junction of the border. The photovoltaic current can have a sufficient current density to be destructive to the metal connections to a well if the area of these metal connections to the well is small relative to the length of the border. This photovoltaic current can be reduced below destructive levels by covering the common border sufficiently to reduce the number of photons hitting the common border. The surface area of the connections can also be increased to alleviate the problem.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: July 3, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Bradley P. Smith, Edward O. Travis
  • Patent number: 6956281
    Abstract: A semiconductor device that has a common border between P and N wells is susceptible to photovoltaic current that is believed to be primarily generated from photons that strike this common border. Photons that strike the border are believed to create electron/hole pairs that separate when created at the PN junction of the border. The photovoltaic current can have a sufficient current density to be destructive to the metal connections to a well if the area of these metal connections to the well is small relative to the length of the border. This photovoltaic current can be reduced below destructive levels by covering the common border sufficiently to reduce the number of photons hitting the common border. The surface area of the connections can also be increased to alleviate the problem.
    Type: Grant
    Filed: August 21, 2002
    Date of Patent: October 18, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Bradley P. Smith, Edward O. Travis
  • Patent number: 6838354
    Abstract: Dummy features (64, 65, 48a, 48b) are formed within an interlevel dielectric layer (36). Passivation layers (32 and 54) are formed by electroless deposition to protect the underlying conductive regions (44, 48a, 48b and 30) from being penetrated from the air gaps (74). In addition, the passivation layers (32 and 54) overhang the underlying conductive regions (44, 48a, 48b and 30), thereby defining dummy features (65a, 65b and 67) adjacent the conductive regions (48a, 44 and 48b). The passivation layers (32 and 54) can be formed without additional patterning steps and help minimize misaligned vias from puncturing air gaps.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: January 4, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Cindy K. Goldberg, Stanley Michael Filipiak, John C. Flake, Yeong-Jyh T. Lii, Bradley P. Smith, Yuri E. Solomentsev, Terry G. Sparks, Kirk J. Strozewski, Kathleen C. Yu
  • Patent number: 6764919
    Abstract: Dummy features (64, 65a, 65b, 48a, 48b) are formed within an interlevel dielectric layer (36). A non-gap filling dielectric layer (72) is formed over the dummy features (64, 65a, 65b, 48a, 48b) to form voids (74) between dummy features (64, 65a, 65b, 48a, 48b) or between a dummy feature (48a) and a current carrying region (44). The dummy features (64, 65a, 65b, 48a, 48b) can be conductive (48a, 48b) and therefore, formed when forming the current carrying region (44). In another embodiment, the dummy features (64, 65a, 65b, 48a, 48b) are insulating (64, 65a, 65b) and are formed after forming the current carrying region (44). In yet another embodiment, both conductive and insulating dummy features (64, 65a, 65b, 48a, 48b) are formed. In a preferred embodiment, the voids (74) are air gaps, which are a low dielectric constant material.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: July 20, 2004
    Assignee: Motorola, Inc.
    Inventors: Kathleen C. Yu, Edward O. Travis, Bradley P. Smith
  • Publication number: 20040121577
    Abstract: Dummy features (64, 65a, 65b, 48a, 48b) are formed within an interlevel dielectric layer (36). A non-gap filling dielectric layer (72) is formed over the dummy features (64, 65a, 65b, 48a, 48b) to form voids (74) between dummy features (64, 65a, 65b, 48a, 48b) or between a dummy feature (48a) and a current carrying region (44). The dummy features (64, 65a, 65b, 48a, 48b) can be conductive (48a, 48b) and therefore, formed when forming the current carrying region (44). In another embodiment, the dummy features (64, 65a, 65b, 48a, 48b) are insulating (64, 65a, 65b) and are formed after forming the current carrying region (44). In yet another embodiment, both conductive and insulating dummy features (64, 65a, 65b, 48a, 48b) are formed. In a preferred embodiment, the voids (74) are air gaps, which are a low dielectric constant material.
    Type: Application
    Filed: December 20, 2002
    Publication date: June 24, 2004
    Inventors: Kathleen C. Yu, Edward O. Travis, Bradley P. Smith
  • Publication number: 20040119134
    Abstract: Dummy features (64, 65, 48a, 48b) are formed within an interlevel dielectric layer (36). Passivation layers (32 and 54) are formed by electroless deposition to protect the underlying conductive regions (44, 48a, 48b and 30) from being penetrated from the air gaps (74). In addition, the passivation layers (32 and 54) overhang the underlying conductive regions (44, 48a, 48b and 30), thereby defining dummy features (65a, 65b and 67) adjacent the conductive regions (48a, 44 and 48b). The passivation layers (32 and 54) can be formed without additional patterning steps and help minimize misaligned vias from puncturing air gaps.
    Type: Application
    Filed: December 20, 2002
    Publication date: June 24, 2004
    Inventors: Cindy K. Goldberg, Stanley Michael Filipiak, John C. Flake, Yeong-Jyh T. Lii, Bradley P. Smith, Yuri E. Solomentsev, Terry G. Sparks, Kirk J. Strozewski, Kathleen C. Yu
  • Publication number: 20040036150
    Abstract: A semiconductor device that has a common border between P and N wells is susceptible to photovoltaic current that is believed to be primarily generated from photons that strike this common border. Photons that strike the border are believed to create electron/hole pairs that separate when created at the PN junction of the border. The photovoltaic current can have a sufficient current density to be destructive to the metal connections to a well if the area of these metal connections to the well is small relative to the length of the border. This photovoltaic current can be reduced below destructive levels by covering the common border sufficiently to reduce the number of photons hitting the common border. The surface area of the connections can also be increased to alleviate the problem.
    Type: Application
    Filed: August 21, 2002
    Publication date: February 26, 2004
    Inventors: Bradley P. Smith, Edward O. Travis
  • Patent number: 6551919
    Abstract: A dual inlaid copper interconnect structure uses a plasma enhanced nitride (PEN) bottom capping layer and a silicon rich silicon oxynitride intermediate etch stop layer. The interfaces (16a, 16b, 20a, and 20b) between these layers (16 and 20) and their adjacent dielectric layers (18 and 22) are positioned in the stack (13) independent of the desired aspect ratio of trench openings of the copper interconnect in order to improve optical properties of the dielectric stack (13). Etch processing is then used to position the layers (16) and (20) at locations within the inlaid structure depth that result in one or more of reduced DC leakage current, improved optical performance, higher frequency of operation, reduced cross talk, increased flexibility of design, or like improvements.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: April 22, 2003
    Assignee: Motorola, Inc.
    Inventors: Suresh Venkatesan, Bradley P. Smith, Mohammed Rabiul Islam
  • Patent number: 6489083
    Abstract: A process for forming a masking database that includes defining a first feature level for the masking database corresponding to a first layer. The first feature level includes a first region with a first feature density and a second region with a second feature density that is substantially different from the first feature density. The process also includes defining a second feature level for the masking database corresponding to a second layer, wherein the second feature level is to be formed over a substrate after the first feature level has been formed over or within the substrate. A first feature within the second feature level will be formed within the first region, a second feature within the second feature level will be formed within the second region. The second layer will have a first thickness over the first layer within the first region and has a second thickness over the first layer within the second region.
    Type: Grant
    Filed: October 2, 2000
    Date of Patent: December 3, 2002
    Assignee: Motorola, Inc.
    Inventors: Bradley P. Smith, Edward O. Travis, Sejal N. Chheda, Ruiqi Tian
  • Patent number: 6459156
    Abstract: At least one process-assist feature (210, 70, 706, 806, 506, 406, 608, 904, 1106, 108, 1206, 1208) at or near a via location of a wiring structure (75, 700, 800, 500, 400, 614, 908, 1205) within a semiconductor device is used to improve processing or processing margin during subsequent processing. For at least some of the embodiments of the present invention, the process-assist features feature (210, 70, 706, 806, 506, 406, 608, 904, 1106, 1108, 1206, 1208) help to make a flowable layer more uniform over via locations (84, 74, 704, 804, 504, 404, 603, 904, 1104, 1204). Typically, this can help in the formation of via openings. When a resist layer (204) is formed over the process-assist features, the resist layer (204) will have a more uniform thickness over most via locations within the device. When an insulating layer (197) is formed over the via locations, the insulating layer (107) will have a more uniform thickness over most via locations within the device.
    Type: Grant
    Filed: December 22, 1999
    Date of Patent: October 1, 2002
    Assignee: Motorola, Inc.
    Inventors: Edward O. Travis, Sejal N. Chheda, Bradley P. Smith, Ruiqi Tian
  • Patent number: 6451181
    Abstract: A method for forming an improved copper inlaid interconnect (FIG. 11) begins by performing an RF preclean operation (408) on the inlaid structure in a chamber (10). The RF preclean rounds corners (210a and 206a) of the structure to reduce voiding and improve step coverage while not significantly removing copper atoms from the underlying exposed copper interconnects surfaces (202a). A tantalum barrier (220) is then deposited where one portion of the tantalum barrier is more tensile than another portion of the tantalum barrier. After formation of the barrier layer (220), a copper seed layer (222) is formed over a top of the barrier layer. The copper layer is formed while clamping the wafer with an improved clamp (85) which reduces copper peeling and contamination at wafer edges. Copper electroplating and chemical mechanical polishing (CMP) processes are then used to complete the copper interconnect structure.
    Type: Grant
    Filed: March 2, 1999
    Date of Patent: September 17, 2002
    Assignee: Motorola, Inc.
    Inventors: Dean J. Denning, Sam S. Garcia, Bradley P. Smith, Daniel J. Loop, Gregory Norman Hamilton, Md. Rabiul Islam, Brian G. Anthony
  • Publication number: 20020092763
    Abstract: A method for forming an improved copper inlaid interconnect (FIG. 11) begins by performing an RF preclean operation (408) on the inlaid structure in a chamber (10). The RF preclean rounds corners (210a and 206a) of the structure to reduce voiding and improve step coverage while not significantly removing copper atoms from the underlying exposed copper interconnects surfaces (202a). A tantalum barrier (220) is then deposited where one portion of the tantalum barrier is more tensile than another portion of the tantalum barrier. After formation of the barrier layer (220), a copper seed layer (222) is formed over a top of the barrier layer. The copper layer is formed while clamping the wafer with an improved clamp (85) which reduces copper peeling and contamination at wafer edges. Copper electroplating and chemical mechanical polishing (CMP) processes are then used to complete the copper interconnect structure.
    Type: Application
    Filed: February 22, 2002
    Publication date: July 18, 2002
    Inventors: Dean J. Denning, Sam S. Garcia, Bradley P. Smith, Daniel J. Loop, Gregory Norman Hamilton, Md. Rabiul Islam, Brian G. Anthony
  • Publication number: 20020039836
    Abstract: A dual inlaid copper interconnect structure uses a plasma enhanced nitride (PEN) bottom capping layer and a silicon rich silicon oxynitride intermediate etch stop layer. The interfaces (16a, 16b, 20a, and 20b) between these layers (16 and 20) and their adjacent dielectric layers (18 and 22) are positioned in the stack (13) independent of the desired aspect ratio of trench openings of the copper interconnect in order to improve optical properties of the dielectric stack (13). Etch processing is then used to position the layers (16) and (20) at locations within the inlaid structure depth that result in one or more of reduced DC leakage current, improved optical performance, higher frequency of operation, reduced cross talk, increased flexibility of design, or like improvements.
    Type: Application
    Filed: October 3, 2001
    Publication date: April 4, 2002
    Inventors: Suresh Venkatesan, Bradley P. Smith, Mohammed Rabiul Islam
  • Patent number: 6326301
    Abstract: A dual inlaid copper interconnect structure uses a plasma enhanced nitride (PEN) bottom capping layer and a silicon rich silicon oxynitride intermediate etch stop layer. The interfaces (16a, 16b, 20a, and 20b) between these layers (16 and 20) and their adjacent dielectric layers (18 and 22) are positioned in the stack (13) independent of the desired aspect ratio of trench openings of the copper interconnect in order to improve optical properties of the dielectric stack (13). Etch processing is then used to position the layers (16) and (20) at locations within the inlaid structure depth that result in one or more of reduced DC leakage current, improved optical performance, higher frequency of operation, reduced cross talk, increased flexibility of design, or like improvements.
    Type: Grant
    Filed: July 13, 1999
    Date of Patent: December 4, 2001
    Assignee: Motorola, Inc.
    Inventors: Suresh Venkatesan, Bradley P. Smith, Mohammed Rabiul Islam
  • Patent number: 5885856
    Abstract: A pattern of dummy structures (20) is added to the layout pattern of an integrated circuit (10) to equilibrate the polishing rate across the surface of a semiconductor substrate (11). The location of each dummy structure (20) is predetermined so that it does not intersect a well boundary (17) or an active region (21,27), and does not fall under a conductive material such as a layer of polysilicon (22,28) or an interconnect structure (23,29).
    Type: Grant
    Filed: August 21, 1996
    Date of Patent: March 23, 1999
    Assignee: Motorola, Inc.
    Inventors: Percy V. Gilbert, Subramoney Iyer, Bradley P. Smith, Matthew A. Thompson, Kevin Kemp, Rajive Dhar