Patents by Inventor Brandon Shaw

Brandon Shaw has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200292911
    Abstract: A liquid crystal-based non-mechanical beam steering device that permits steering in the mid-wave infrared and has a chalcogenide waveguide. The waveguide core, the subcladding, or both comprise a chalcogenide glass. The liquid crystal-based non-mechanical beam steering device has a tapered subcladding and a liquid crystal layer.
    Type: Application
    Filed: May 22, 2020
    Publication date: September 17, 2020
    Inventors: Jesse A. Frantz, Jason D. Myers, Robel Y. Bekele, Christopher M. Spillmann, Jawad Naciri, Jakub Kolacz, Henry G. Gotjen, Jason Auxier, Leslie Brandon Shaw, Jasbinder S. Sanghera
  • Publication number: 20200271862
    Abstract: A method for creating a random anti-reflective surface structure on an optical fiber including a holder configured to hold the optical fiber comprising a groove and a fiber connector, an adhesive material to hold the optical fiber in the holder and fill any gap between the optical fiber and the holder, a glass to cover the adhesive material and the optical fiber, and a reactive ion etch device. The reactive ion etch device comprises a plasma and is configured to expose an end face of the optical fiber to the plasma. The plasma is configured to etch a random anti-reflective surface structure on the end face of the optical fiber.
    Type: Application
    Filed: May 14, 2020
    Publication date: August 27, 2020
    Inventors: Jesse A. Frantz, Lynda E. Busse, Jason D. Myers, L. Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal, Catalin M. Florea
  • Patent number: 10734943
    Abstract: A system for transmitting power to a remote equipment, the system including a first laser source that generates a first laser beam; a first tracking device operatively connected to the first laser source, wherein the first tracking device controls a direction of the first laser beam; and a first photovoltaic device operatively connected to the remote equipment located remotely from the first laser source and the first tracking device, wherein the first photovoltaic device includes a semiconductor material that generates an electric current in response to absorbing the first laser beam, and wherein a first wavelength of the first laser beam is within an eye-safer range.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: August 4, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Jason D. Myers, Steven R. Bowman, L. Brandon Shaw, Jasbinder S. Sanghera
  • Publication number: 20200200675
    Abstract: A standoff chemical detection system that includes a source and detector are provided. The source includes: a controller, memory communicatively connected to the controller, optical sources each constructed to operate over different wavelength ranges, and a power supply. The controller controls the plurality of optical sources to emit respective infrared beams towards a target detection area in a sequential order. The detector includes: an image sensor and a controller that is communicatively connected to the image sensor. Memory and the notification device are also communicatively connected to the controller. The image sensor receives attenuated infrared beams emitted by the optical sources sequentially and at least partially attenuated by chemicals in the target detection area. The controller is constructed to calculate stimulus value signals from the recorded image data and determine whether a hazard chemical is located within the target detection area based on the calculated stimulus value signals.
    Type: Application
    Filed: October 30, 2019
    Publication date: June 25, 2020
    Inventors: Kevin Major, Kenneth Ewing, Jasbinder Sanghera, L. Brandon Shaw
  • Patent number: 10690992
    Abstract: A method for making a chalcogenide glass waveguide in a liquid crystal-based non-mechanical beam steering device that permits steering in the mid-wave infrared. The waveguide core, the subcladding, or both comprise a chalcogenide glass. A mask is used to produce a tapered subcladding. Also disclosed is the related non-mechanical beam steering device that includes a chalcogenide waveguide.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: June 23, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Jason D. Myers, Robel Y. Bekele, Christopher M. Spillmann, Jawad Naciri, Jakub Kolacz, Henry G. Gotjen, Jason Auxier, Leslie Brandon Shaw, Jasbinder S. Sanghera
  • Patent number: 10663667
    Abstract: A system and method for creating a random anti-reflective surface structure on an optical fiber including a holder configured to hold the optical fiber comprising a groove and a fiber connector, an adhesive material to hold the optical fiber in the holder and fill any gap between the optical fiber and the holder, a glass to cover the adhesive material and the optical fiber, and a reactive ion etch device. The reactive ion etch device comprises a plasma and is configured to expose an end face of the optical fiber to the plasma. The plasma is configured to etch a random anti-reflective surface structure on the end face of the optical fiber.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: May 26, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Lynda E. Busse, Jason D. Myers, L. Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal, Catalin M. Florea
  • Patent number: 10649142
    Abstract: Systems and methods are disclosed for splicing crystal fibers to silica glass fibers. Embodiments of the present disclosure provide mechanically stable bonds with negligible optical transmission loss by splicing fibers through a thermally enhanced reaction bonding process at lower temperatures than the melting point of the crystal. In an embodiment, mixing of the materials at elevated temperatures forms a stable intermediary material which enhances strength and reduces the transmission losses.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: May 12, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Rajesh Thapa, Rafael R. Gattass, Daniel J. Gibson, Woohong Kim, L. Brandon Shaw, Jasbinder S. Sanghera
  • Publication number: 20200059060
    Abstract: Fiber optic amplification includes a photonic crystal fiber coupled to a pump laser through a first coupler. The pump laser emits a first electromagnetic radiation wave into the photonic crystal fiber at a first oscillation frequency and a second electromagnetic radiation wave into the photonic crystal fiber at a second oscillation frequency equaling the first oscillation frequency. The first and second electromagnetic radiation waves interact to generate a signal comprising an electromagnetic radiation wave at a third oscillation frequency and an idler comprising a fourth electromagnetic radiation wave at a fourth oscillation frequency to be generated and amplified through parametric amplification. Parametric amplification is achieved by four wave mixing. The photonic crystal fiber emits a parametric output signal based on the four wave mixing. A nonlinear crystal frequency doubles the parametric output signal through second-harmonic generation.
    Type: Application
    Filed: August 20, 2019
    Publication date: February 20, 2020
    Inventors: L. Brandon Shaw, Rafael R. Gattass, Rajesh Thapa, Lynda E. Busse, Ishwar D. Aggarwal, Daniel L. Rhonehouse, Jasbinder S. Sanghera, Jason Auxier
  • Publication number: 20190389776
    Abstract: Disclosed is a method of flash sintering a sample composed of ceramic particles by providing laser energy to change the electrical properties of the ceramic material. The processes and systems disclosed herein do not require large heating equipment like a furnace allowing for a portable system of repairing ceramic materials in the field.
    Type: Application
    Filed: June 21, 2019
    Publication date: December 26, 2019
    Inventors: Guillermo R. Villalobos, Rafael R. Gattass, Michael Hunt, Shyam S. Bayya, Bryan Sadowski, Robert Miklos, Frederic H. Kung, Woohong Kim, L. Brandon Shaw, Jasbinder S. Sanghera, Antti Makinen
  • Publication number: 20190382298
    Abstract: An optical fiber with multiple openings made from the steps comprising fabricating an extrusion die using at least one additive manufacturing technique such that the extrusion die has a first set of plurality of channels that combine inside the die into a second set of plurality of channels with a different set of shapes and sizes, extruding a glass through the extrusion die, forming a fiber optic preform having a plurality of longitudinal openings that run the entire length of the fiber optic preform, attaching a barrier layer to the fiber optic preform to form a series of channels to which pressure can be applied by a gas, wherein each channel has a pressure that is independently controlled, and stretching the fiber optic preform at an elevated temperature into an optical fiber with multiple openings.
    Type: Application
    Filed: June 3, 2019
    Publication date: December 19, 2019
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Daniel J. Gibson, Rafael R. Gattass, Daniel L. Rhonehouse, Shyam S. Bayya, L. Brandon Shaw, Jasbinder S. Sanghera
  • Publication number: 20190324209
    Abstract: Systems and methods are disclosed for splicing crystal fibers to silica glass fibers. Embodiments of the present disclosure provide mechanically stable bonds with negligible optical transmission loss by splicing fibers through a thermally enhanced reaction bonding process at lower temperatures than the melting point of the crystal. In an embodiment, mixing of the materials at elevated temperatures forms a stable intermediary material which enhances strength and reduces the transmission losses.
    Type: Application
    Filed: June 28, 2019
    Publication date: October 24, 2019
    Inventors: Rajesh Thapa, Rafael R. Gattass, Daniel J. Gibson, Woohong Kim, L. Brandon Shaw, Jasbinder S. Sanghera
  • Patent number: 10444595
    Abstract: An optical system has a beam-steering device having a planar waveguide region between a tapered incoupler and a tapered outcoupler that respectively define opposing incoupler and outcoupler facets of the BS device. Each region has a substrate, a subcladding layer over the substrate, a core layer over the subcladding, and a top cladding layer over the core. Within the incoupler, at least one of the subcladding and the top cladding has a material having a refractive index that varies with an applied field (e.g., an electric field) applied at the incoupler. The optical system also has a field-applying device that applies the applied field at the incoupler, an output detector that generates a feedback signal based on detected outgoing light output from the outcoupler, and a controller that controls the field-applying device based on the feedback signal to alter the light output from the outcoupler.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: October 15, 2019
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jason D. Myers, Jesse A. Frantz, Christopher M. Spillmann, Robel Y. Bekele, Henry G. Gotjen, Jawad Naciri, Jakub Kolacz, L. Brandon Shaw, Jasbinder S. Sanghera
  • Publication number: 20190265573
    Abstract: An optical system has a beam-steering device, a light source, and a controller that controls the light source to actively control wavelength of the incoming light to control the output angle of the outgoing light output from the BS device. The BS device may have incoupler, waveguide, and/or outcoupler electrodes, and the system may have corresponding controllable voltage supplies actively controlled by the controller to selectively modify electric fields applied to the BS device to control corresponding operating characteristics of the BS device (e.g., in-plane and/or out-of-plane output angles of the outgoing light and/or device incoupling angle). An alternative optical system has a BS device, a detector array that generates detector signals corresponding to outgoing light received from the BS device, and a controller that processes the detector signals to determine one or more wavelengths of the outgoing light.
    Type: Application
    Filed: February 27, 2019
    Publication date: August 29, 2019
    Inventors: JASON D. MYERS, Jesse A. Frantz, Christopher M. Spillmann, Robel Y. Bekele, Henry G. Gotjen, Jawad Naciri, Jakub Kolacz, L. Brandon Shaw, Jasbinder S . Sanghera .
  • Patent number: 10394102
    Abstract: A device for the generation of supercontinuum in infrared fiber with a compact light source comprising a microchip laser is launched directly into an infrared fiber without a nonlinear element. Light from the laser is beyond the two-photon absorption of the infrared fiber. The broadband output has a bandwidth greater than the input laser bandwidth by at least 100% and an emission wavelength range from 2 to 14 micrometers.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: August 27, 2019
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Rafael R. Gattass, Jasbinder S. Sanghera, L. Brandon Shaw
  • Patent number: 10389082
    Abstract: The invention relates to rare-earth-doped ternary sulfides. The rare-earth-doped ternary sulfides may be used as an active material for mid-wave infrared and long-wave infrared lasers and amplifiers. Methods for producing laser materials including rare-earth-doped ternary sulfides, as well as lasers and amplifiers incorporating the laser materials, are also provided.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: August 20, 2019
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: L. Brandon Shaw, Michael P. Hunt, Woohong Kim, Shyam S. Bayya, Steven R. Bowman, Frederic H. Kung, Jasbinder S. Sanghera, Christopher G. Brown
  • Patent number: 10370280
    Abstract: A method of making an optical fiber with multiple openings comprising the steps of fabricating an extrusion die using additive manufacturing such that the extrusion die has a plurality of channels that combine inside the die into another set of channels, extruding a glass, forming a fiber optic preform having a plurality of longitudinal openings that run the entire length, attaching a barrier layer for pressure application, and stretching the preform into an optical fiber with multiple openings. An extrusion die comprising an additive manufactured material, having a proximal side having openings and having a distal side having openings, wherein the openings of the proximal side are of feed channels, wherein the openings of the distal side are of forming channels, and wherein in side the body of the die, two of the feed channels combine the forming channels.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: August 6, 2019
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Daniel J. Gibson, Rafael R. Gattass, Daniel L. Rhonehouse, Shyam S. Bayya, L. Brandon Shaw, Jasbinder S. Sanghera
  • Patent number: 10359574
    Abstract: Systems and methods are provided for mechanically encapsulating an infrared transmitting optical fiber, removing any power coupled to the cladding of the infrared optical fiber, and bridging the thermal properties between the optical fiber and the mechanical ferrule used. Embodiments of the present disclosure have several advantages over prior systems. For example, in an embodiment, the transmitting ferrule does not require epoxy to mount the fiber to the ferrule, isolates the front face of the fiber, and allows for high power to be incident on the connector without damage by reducing the thermal induced stress and managing any stray light coupled to the core.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: July 23, 2019
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Rafael R. Gattass, Leslie Brandon Shaw, Jasbinder S. Sanghera, Shyam S. Bayya, Daniel L. Rhonehouse
  • Patent number: 10350633
    Abstract: A composite and a coating having engineered reflective properties are described. The composite comprises a matrix and flakes of a multilayer polymer film including one or more bilayers including at least a layer of a first polymer and a layer of a second polymer having a different refractive index than the first polymer. The coating described includes the composite as applied to a surface and has a reflectance of at least 10% for a selected wavelength range and a transmittance of at least 50% at wavelengths outside of the selected wavelength range. Also described are methods for forming the composite and the coating.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: July 16, 2019
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Lynda E. Busse, Leslie Brandon Shaw, Jasbinder S. Sanghera
  • Publication number: 20190204711
    Abstract: A beam-steering device, such as a steerable electro-evanescent optical refractor, has a planar waveguide region between an incoupler and an outcoupler. Each region has a substrate and a plurality of thin-film layers, such as a subcladding layer over the substrate and a core layer over the subcladding. For at least one coupler, at least two of the thin-film layers have spatially varying optical thicknesses due to, for example, the subcladding and the core being tapered with decreasing thicknesses from the waveguide region to the corresponding facet of the BS device. Alternatively, spatially varying optical thickness can be achieved by spatially varying a layer's refractive index. The coupler has a FWHM bandwidth and a FWHM coupling angle tolerance that greatly exceed those achievable using conventional Ulrich couplers.
    Type: Application
    Filed: January 3, 2019
    Publication date: July 4, 2019
    Inventors: Jason D. Myers, Jesse A. Frantz, Christopher M. Spillmann, Robel Y. Bekele, Henry G. Gotjen, Jawad Naciri, Jakub Kolacz, L. Brandon Shaw, Jasbinder S. Sanghera
  • Publication number: 20190204710
    Abstract: An optical system has a beam-steering device having a planar waveguide region between a tapered incoupler and a tapered outcoupler that respectively define opposing incoupler and outcoupler facets of the BS device. Each region has a substrate, a subcladding layer over the substrate, a core layer over the subcladding, and a top cladding layer over the core. Within the incoupler, at least one of the subcladding and the top cladding has a material having a refractive index that varies with an applied field (e.g., an electric field) applied at the incoupler. The optical system also has a field-applying device that applies the applied field at the incoupler, an output detector that generates a feedback signal based on detected outgoing light output from the outcoupler, and a controller that controls the field-applying device based on the feedback signal to alter the light output from the outcoupler.
    Type: Application
    Filed: January 3, 2019
    Publication date: July 4, 2019
    Inventors: JASON D. MYERS, Jesse A. Frantz, Christopher M. Spillmann, Robel Y. Bekele, Henry G. Gotjen, Jawad Naciri, Jakub Kolacz, L. Brandon Shaw, Jasbinder S. Sanghera