Patents by Inventor Brandon Shaw

Brandon Shaw has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130188660
    Abstract: A method of generating ultrashort pulses with wavelengths greater than 2 ?m comprising a short pulse diode laser or fiber laser operating at a wavelength of 1 ?m or greater with a pulse width of 10 ps or greater, one or more amplification stages to increase the peak power of the pulsed source, a nonlinear fiber stage whereby the dispersion of the nonlinear fiber is anomalous at the pulsed source wavelength such that the fiber breaks up the pulse into a series of sub-ps pulse train through modulation instability which may be seeded by spontaneous noise which are then wavelength shifted in one or more stages by soliton self frequency shift in anomalous dispersion fiber or Raman in normal dispersion fiber and amplified in one or more stages to generate a high peak power ultrashort pulse (<1 ps) source at a wavelength of 2.4 ?m or greater.
    Type: Application
    Filed: January 16, 2013
    Publication date: July 25, 2013
    Inventors: Leslie Brandon Shaw, Rafael R. Gattass, Jasbinder S. Sanghera, Ishwar D. Aggarwal
  • Publication number: 20130188240
    Abstract: A method of generating a supercontinuum in chalcogenide fiber with a pump light comprising a short pulse fiber laser or diode laser operating with a wavelength of 1.0 ?m or greater that is wavelength shifted through a nonlinear fiber one or more times and amplified one or more times and launched into a chalcogenide fiber whereby the spectrum is broadened in the chalcogenide fiber through various nonlinear processes to generate a supercontinuum within the mid-IR from 1.5 to greater than 5 ?m.
    Type: Application
    Filed: January 16, 2013
    Publication date: July 25, 2013
    Inventors: Leslie Brandon Shaw, Rafael R. Gattass, Jasbinder S. Sanghera, Ishwar D. Aggarwal
  • Publication number: 20130083402
    Abstract: An optical system having two or more different optical elements with a corresponding interface between the optical elements. At least one of the optical elements has an anti-reflective structure that is transferred to the interface between two optical elements, typically by embossing. Also disclosed is the related method for making the optical system.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 4, 2013
    Inventors: Jasbinder S. Sanghera, Catalin M. Florea, Leslie Brandon Shaw, Lynda E. Busse, Ishwar D. Aggarwal, Steven R. Bowman
  • Publication number: 20130083812
    Abstract: A laser apparatus uses a dysprosium doped chalcogenide glass fiber. The glass fiber has a laser pump operatively connected to it. The chalcogenide glass fiber is located in a laser cavity including one or more reflective elements such as a Bragg grating, a Bragg minor, a grating, and a non-doped fiber end face. The apparatus provides laser light output at a wavelength of about 4.3 ?m to about 5.0 ?m at a useful power level using laser light input at a wavelength of from about 1.7 ?m to about 1.8 ?m. Also disclosed is a method for providing laser light output at a wavelength of about 4.3 ?m to about 5.0 ?m using the apparatus of the invention.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Inventors: Leslie Brandon Shaw, Jasbinder S. Sanghera, Shyam S. Bayya, Ishwar D. Aggarwal
  • Publication number: 20120321263
    Abstract: A method and apparatus for making a substantially void-free preform for a microstructured optical fiber using a one-step process is provided. A preform is prepared from specialty glasses using a direct extrusion method. A die for use with the direct extrusion method is also provided, and a method for drawing the preform into a HC-PBG fiber for use in transmitting infra-red wavelength light is also provided. The preform comprises an outer jacket made of solid glass, a cladding having a plurality of air holes arranged in a desired pattern within the jacket, and a core which is hollow.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Inventors: DANIEL J. GIBSON, Jasbinder S. Sanghera, Frederic H. Kung, Pablo C. Pureza, Robert E. Miklos, Guillermo R. Villalobos, Leslie Brandon Shaw, Ishwar D. Aggarwal
  • Publication number: 20120227755
    Abstract: The invention teaches devices and methods for chemically tanning human skin. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: February 1, 2012
    Publication date: September 13, 2012
    Inventors: Drew Waters, Brandon Shaw, Frank Verdun
  • Publication number: 20120119147
    Abstract: A transparent polycrystalline ceramic having scattering and absorption loss less than 0.2/cm over a region comprising more than 95% of the originally densified shape and a process for fabricating the same by hot pressing. The ceramic can be any suitable ceramic such as yttria (Y2O3) or scandia (Sc2O3) and can have a doping level of from 0 to 20% and a grain size of greater than 30 although the grains can also be smaller than 30 ?m. Ceramic nanoparticles can be coated with a sintering aid to minimize direct contact of adjacent ceramic powder particles and then baked at high temperatures to remove impurities from the coated particles. The thus-coated particles can then be densified by hot pressing into the final ceramic product. The invention further provides a transparent polycrystalline ceramic solid-state laser material and a laser using the hot pressed polycrystalline ceramic.
    Type: Application
    Filed: January 13, 2012
    Publication date: May 17, 2012
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jasbinder S. Sanghera, Guillermo R. Villalobos, Woohong Kim, Shyam S. Bayya, Bryan Sadowski, Jesse A. Frantz, Leslie Brandon Shaw, Ishwar D. Aggarwal
  • Publication number: 20120119146
    Abstract: A transparent polycrystalline ceramic having scattering and absorption loss less than 0.2/cm over a region comprising more than 95% of the originally densified shape and a process for fabricating the same by hot pressing. The ceramic can be any suitable ceramic such as yttria (Y2O3) or scandia (Sc2O3) and can have a doping level of from 0 to 20% and a grain size of greater than 30 ?m, although the grains can also be smaller than 30 ?m. Ceramic nanoparticles can be coated with a sintering aid to minimize direct contact of adjacent ceramic powder particles and then baked at high temperatures to remove impurities from the coated particles. The thus-coated particles can then be densified by hot pressing into the final ceramic product. The invention further provides a transparent polycrystalline ceramic solid-state laser material and a laser using the hot pressed polycrystalline ceramic.
    Type: Application
    Filed: January 13, 2012
    Publication date: May 17, 2012
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jasbinder S. Sanghera, Guillermo R. Villalobos, Woohong Kim, Shyam S. Bayya, Bryan Sadowski, Jesse A. Frantz, Leslie Brandon Shaw, Ishwar D. Aggarwal
  • Patent number: 8144392
    Abstract: A waveguide amplifier, disposed on a substrate, composed of sputtered film of chalcogenide glass doped with Erbium is disclosed. The amplifier includes a substrate, a thick film of chalcogenide glass disposed on the substrate, a pumping device, and an optical combining device, wherein the waveguide is operable to amplify the optically combined signal. This type of amplifier has been shown to be compact and cost-effective, in addition to being transparent in the mid-IR range as a result of the low phonon energy of chalcogenide glass.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: March 27, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Jasbinder S Sanghera, Ishwar D Aggarwal, Jesse A. Frantz, Leslie Brandon Shaw
  • Patent number: 8137328
    Abstract: The invention teaches devices and methods for chemically tanning human skin. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: March 20, 2012
    Assignee: Safe Tan
    Inventors: Drew Waters, Brandon Shaw, Frank Verdun
  • Patent number: 7978738
    Abstract: A wavelength converter comprising an arsenic sulfide (As—S) chalcogenide glass fiber coupled to an optical parametric oscillator (OPO) crystal and a laser system using an OPO crystal coupled to an As—S fiber are provided. The OPO receives pump laser radiation from a pump laser and emits laser radiation at a wavelength that is longer than the pump laser radiation. The laser radiation that is emitted from the OPO is input into the As—S fiber, which in turn converts the input wavelength from the OPO to a desired wavelength, for example, a wavelength beyond about 4.4 ?m. In an exemplary embodiment, the OPO comprises a periodically poled lithium niobate (PPLN) crystal. The As—S fiber can include any suitable type of optical fiber, such as a conventional core clad fiber, a photonic crystal fiber, or a microstructured fiber.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: July 12, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Leslie Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal
  • Patent number: 7939805
    Abstract: A Fourier-Transform Infrared (FTIR) spectrometer for operation in the mid- and long-wave infrared region (about 2-15 micron wavelengths) is disclosed. The FTIR spectrometer is composed of IR-transmitting fiber and uses a broadband IR source. A fiber stretcher is provided to provide a path difference between a first path and a second path having a sample associated therewith. Stretching of the fiber provides a path difference sufficient to generate an interferogram that can subsequently be analyzed to obtain information about a sample. A method for use of the apparatus of the invention is also disclosed. The method involves stretching of an IR-transmitting fiber to create a path difference sufficient to generate an interferogram. Various aspects of these features enable the construction of compact, portable spectrometers.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: May 10, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Leslie Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal
  • Publication number: 20110100548
    Abstract: A functionally doped polycrystalline ceramic laser medium and method of making thereof are provided. The medium includes a solid state polycrystalline Ytterbium doped Yttria or Scandia (Yb:Y2O3 or Yb:Sc2O3) laser medium with a discrete or continuous gradient doping profile and methods for manufacturing the same. The doping profile can be two- or three-dimensional and can vary depending upon the laser geometry, the pumping scheme, and the benefits to be desired from the laser medium's structure. The grading direction can be linear, axial, radial, or any combination thereof. The material can be made from a combination of doped and undoped solid shapes, loose powders, and green shapes, and can be diffusion bonded or densified to a desired final shape using techniques such as pressureless sintering, hot pressing, hot forging, spark plasma sintering, and hot isostatic pressing (HIPing), or their combinations.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 5, 2011
    Inventors: Leslie Brandon Shaw, Jasbinder S. Sanghera, Guillermo R. Villalobos, Woohong Kim, Ishwar D. Aggarwal
  • Publication number: 20110104491
    Abstract: A functionally doped polycrystalline ceramic laser medium and method of making thereof are provided. The medium includes a solid state polycrystalline Ytterbium doped Yttria or Scandia (Yb:Y2O3 or Yb:Sc2O3) laser medium with a discrete or continuous gradient doping profile and methods for manufacturing the same. The doping profile can be two- or three-dimensional and can vary depending upon the laser geometry, the pumping scheme, and the benefits to be desired from the laser medium's structure. The grading direction can be linear, axial, radial, or any combination thereof. The material can be made from a combination of doped and undoped solid shapes, loose powders, and green shapes, and can be diffusion bonded or densified to a desired final shape using techniques such as pressureless sintering, hot pressing, hot forging, spark plasma sintering, and hot isostatic pressing (HIPing), or their combinations.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 5, 2011
    Applicant: The Government of the United States of America as represented by the Secretary of the Navy
    Inventors: Leslie Brandon Shaw, Jasbinder S. Sanghera, Guillermo R. Villalobos, Woohong Kim, Ishwar D. Aggarwal
  • Publication number: 20110038587
    Abstract: A chalcogenide multi-clad optical fiber having a core, a first cladding and one or more subsequent claddings including a chalcogenide glass. The optical fiber may be capable of transmitting visible and inferred light and may be used for a wide variety of semiconductor applications.
    Type: Application
    Filed: August 11, 2009
    Publication date: February 17, 2011
    Inventors: Leslie Brandon Shaw, Jasbinder S. Sanghera, Daniel J. Gibson, Ishwar D. Aggarwal, Frederic H. Kung
  • Publication number: 20110033156
    Abstract: An optical fiber having microstructured terminal end suitable for reducing Fresnel losses. In an exemplary embodiment, the microstructured surface includes a plurality of protrusions, recesses or combinations thereof that effectively and incrementally change the refractive index of the terminal end of the optical fiber such that the refractive index is gradually drawn closer to the refractive index value of the surrounding environmental medium.
    Type: Application
    Filed: August 5, 2010
    Publication date: February 10, 2011
    Inventors: Jasbinder S. Sanghera, Catalin M. Florea, Ishwar D. Aggarwal, Leslie Brandon Shaw, Lynda E. Busse, Frederic H. Kung
  • Publication number: 20110013268
    Abstract: Fiber optic amplification in a spectrum of infrared electromagnetic radiation is achieved by creating a chalcogenide photonic crystal fiber (PCF) structure having a radially varying pitch. A chalcogenide PCF system can be tuned during fabrication of the chalcogenide PCF structure, by controlling, the size of the core, the size of the cladding, and the hole size to pitch ratio of the chalcogenide PCF structure and tuned during exercising of the chalcogenide PCF system with pump laser and signal waves, by changing the wavelength of either the pump laser wave or the signal wave, maximization of nonlinear conversion of the chalcogenide PCF, efficient parametric conversion with low peak power pulses of continuous wave laser sources, and minimization of power penalties and minimization of the need for amplification and regeneration of pulse transmissions over the length of the fiber, based on a dispersion factor.
    Type: Application
    Filed: July 19, 2009
    Publication date: January 20, 2011
    Applicant: US Gov't represented by the Secretary of the Navy Chief of Naval Research ONR/NRL Code OOCCIP
    Inventors: Leslie Brandon Shaw, Ishwar Dayal Aggarwal, Jasbinder Singh Sanghera, Daniel Joseph Gibson, Frederic Hau Kung
  • Patent number: 7873251
    Abstract: A photonic band gap fiber and method of making thereof is provided. The fiber is made of a germanate glass comprising at least 30 mol % of a germanium oxide and has a longitudinal central opening, a microstructured region having a plurality of longitudinal surrounding openings, and a jacket. The air fill fraction of the microstructured region is at least about 90%. The fiber may be made by drawing a preform into a fiber, while applying gas pressure to the microstructured region. The air fill fraction of the microstructured region is changed during the drawing.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: January 18, 2011
    Inventors: Shyam S. Bayya, Jasbinder S. Sanghera, Leslie Brandon Shaw, Ishwar D. Aggarwal
  • Publication number: 20110002585
    Abstract: The present invention is generally directed to a device comprising multiple specialty glass optical fibers that combines several different mid-infrared optical signals from multiple optical fibers into one signal in a single optical fiber. In addition, the present invention provides for a method of making the device.
    Type: Application
    Filed: December 22, 2009
    Publication date: January 6, 2011
    Inventors: Daniel J. Gibson, Leslie Brandon Shaw, Jasbinder S. Sanghera, Frederic H. Kung, Ishwar D. Aggarwal
  • Patent number: 7809030
    Abstract: A wavelength converter comprising an arsenic sulfide (As—S) chalcogenide glass fiber coupled to an optical parametric oscillator (OPO) crystal and a laser system using an OPO crystal coupled to an As—S fiber are provided. The OPO receives pump laser radiation from a pump laser and emits laser radiation at a wavelength that is longer than the pump laser radiation. The laser radiation that is emitted from the OPO is input into the As—S fiber, which in turn converts the input wavelength from the OPO to a desired wavelength, for example, a wavelength beyond about 4.4 ?m. In an exemplary embodiment, the OPO comprises a periodically poled lithium niobate (PPLN) crystal. The As—S fiber can include any suitable type of optical fiber, such as a conventional core clad fiber, a photonic crystal fiber, or a microstructured fiber.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: October 5, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Leslie Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal