Patents by Inventor Brent Brower
Brent Brower has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20200362360Abstract: This disclosure provides recombinant DNA constructs and modified or transgenic plants having enhanced traits such as increased yield, increased nitrogen use efficiency, and enhanced drought tolerance or water use efficiency. Modified or transgenic plants may include field crops as well as plant propagules, plant parts and progeny of such modified or transgenic plants. Methods of making and using such modified or transgenic plants are also provided, as are methods of producing seed from such modified or transgenic plants, growing such seed, and selecting progeny plants with enhanced traits. Further disclosed are modified or transgenic plants with altered phenotypes or traits which are useful for screening and selecting transgenic events, edits or mutations with a desired enhanced trait.Type: ApplicationFiled: November 21, 2018Publication date: November 19, 2020Inventors: Robert M. Alba, Edwards M. Allen, Brent Brower-Toland, Molian Deng, Todd DeZwaan, Charles Dietrich, Alexander Goldshmidt, Cara L. Griffith, Miya D. Howell, Niranjani J. Iyer, Hongwu Jia, Saritha V. Kuriakose, Hong Li, Linda L. Lutfiyya, Anil Neelam, Shengzhi Pang, Mingsheng Peng, Monnanda Somaiah Rajani, Daniel Ruzicka, Daniel P. Schachtman, Vijay K. Sharma, Tyamagondlu V. Venkatesh, Huai Wang, Xiaoyun Wu, Nanfei Xu
-
Publication number: 20200024610Abstract: The present disclosure provides methods and compositions for identification of optimal genomic loci in plant genome for site-directed integration in plants.Type: ApplicationFiled: September 29, 2017Publication date: January 23, 2020Applicant: MONSANTO TECHNOLOGY LLCInventors: Brent BROWER-TOLAND, Paul S. CHOMET, Robert T. GAETA, Andrei Y. KOURANOV, Jonathan C. LAMB, Richard J. LAWRENCE, Ruth WAGNER
-
Publication number: 20190300890Abstract: The present invention provides recombinant DNA constructs, vectors and molecules comprising a polynucleotide sequence encoding a florigenic FT protein operably linked to a vegetative stage promoter, which may also be a meristem-preferred or meristem-specific promoter. Transgenic plants, plant cells and tissues, and plant parts are further provided comprising a polynucleotide sequence encoding a florigenic FT protein. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant, particularly on the main stem of the plant, relative to a control or wild type plant. Methods are further provided for introducing a florigenic FT transgene into a plant, and planting transgenic FT plants in the field including at higher densities. Transgenic plants of the present invention may thus provide greater yield potential than wild type plants and may be planted at a higher density due to their altered plant architecture.Type: ApplicationFiled: March 29, 2019Publication date: October 3, 2019Applicant: Monsanto Technology LLCInventors: Brent Brower-Toland, Rico A. Caldo, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya D. Howell, Balasulojini Karunanandaa, Sivalinganna Manjunath, Bradley W. McDill, Daniel J. Ovadya, Sasha Preuss, Elena A. Rice, Beth Savidge, Vijay K. Sharma
-
Publication number: 20190218563Abstract: The present invention provides recombinant DNA constructs, vectors and molecules comprising a polynucleotide sequence encoding a florigenic FT protein operably linked to a vegetative stage promoter, which may also be a meristem-preferred or meristem-specific promoter. Transgenic plants, plant cells and tissues, and plant parts are further provided comprising a polynucleotide sequence encoding a florigenic FT protein. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant, particularly on the main stem of the plant, relative to a control or wild type plant. Methods are further provided for introducing a florigenic FT transgene into a plant, and planting transgenic FT plants in the field including at higher densities. Transgenic plants of the present invention may thus provide greater yield potential than wild type plants and may be planted at a higher density due to their altered plant architecture.Type: ApplicationFiled: March 29, 2019Publication date: July 18, 2019Applicant: Monsanto Technology LLCInventors: Brent Brower-Toland, Rico A. Caldo, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya D. Howell, Balasulojini Karunanandaa, Sivalinganna Manjunath, Bradley W. McDill, Daniel J. Ovadya, Sasha Preuss, Elena A. Rice, Beth Savidge, Vijay K. Sharma
-
Patent number: 10294486Abstract: The present invention provides recombinant DNA constructs, vectors and molecules comprising a polynucleotide sequence encoding a florigenic FT protein operably linked to a vegetative stage promoter, which may also be a meristem-preferred or meristem-specific promoter. Transgenic plants, plant cells and tissues, and plant parts are further provided comprising a polynucleotide sequence encoding a florigenic FT protein. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant, particularly on the main stem of the plant, relative to a control or wild type plant. Methods are further provided for introducing a florigenic FT transgene into a plant, and planting transgenic FT plants in the field including at higher densities. Transgenic plants of the present invention may thus provide greater yield potential than wild type plants and may be planted at a higher density due to their altered plant architecture.Type: GrantFiled: April 18, 2016Date of Patent: May 21, 2019Assignee: Monsanto Technology LLCInventors: Brent Brower-Toland, Rico A. Caldo, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya D. Howell, Balasulojini Karunanandaa, Sivalinganna Manjunath, Bradley W. McDill, Daniel J. Ovadya, Sasha Preuss, Elena A. Rice, Beth Savidge, Vijay K. Sharma
-
Publication number: 20180363515Abstract: An actuator for a cam phaser, the cam phaser including a hydraulic valve that is adjustable by the actuator, wherein the actuator is receivable at a housing section of a component that receives the cam phaser, wherein the actuator includes a retaining element and a housing with functionally relevant components, wherein the actuator is attached by the retaining element at the housing section, wherein the retaining element is configured separate from the housing, wherein safe positioning of the actuator at the housing section is provided by a section of the retaining element that supports the actuator at the housing section in a direction of an axial orientation of the actuator, and wherein a housing cover of the housing is at least partially arranged between the section of the retaining element and the housing section.Type: ApplicationFiled: June 19, 2018Publication date: December 20, 2018Inventors: Daniel Stanhope, Brent Brower
-
Publication number: 20180258801Abstract: An actuator for a cam phaser, wherein the cam phaser includes a hydraulic valve that is adjustable by the actuator, wherein the actuator is receivable at a housing section by at least one form locking connection, wherein the at least one form locking connection includes a first form element pair and a second form element pair, wherein the first form element pair includes a first stop and the second form element pair includes a second stop, and wherein the first stop and the second stop are oriented in opposite directions of rotation of the actuator.Type: ApplicationFiled: February 9, 2018Publication date: September 13, 2018Inventors: Tim Wells, Brian Kujawski, Brent Brower
-
Patent number: 10041385Abstract: A piston for a hydraulic valve of a rotation phaser, wherein the piston is configured hollow cylindrical, wherein the piston is axially movable in a central opening extending along a first longitudinal axis of a housing of the hydraulic valve, wherein operating connections of the housing are opened and closed according to a position of the piston, wherein the piston includes check valves which prevent an unintentional outflow of a hydraulic fluid flowing through the piston from an inner cavity of the piston in flow through openings of the piston associated with the operating connections, wherein the piston is configured with check valves in its inner cavity that open towards its interior cavity, wherein the check valves are fixated by a spacer element that is arranged between the two check valves. The invention also relates to a hydraulic valve for a rotation phaser of a cam shaft.Type: GrantFiled: November 26, 2016Date of Patent: August 7, 2018Assignee: ECO Holding 1 GmbHInventors: Brent Brower, Daniel Stanhope
-
Publication number: 20180105819Abstract: The present invention provides recombinant DNA constructs, vectors and molecules useful for attenuating and/or refining the expression of a florigenic FT gene or transgene using targeting sequences of small RNA molecules. Transgenic plants, plant cells and tissues, and plant parts comprising the recombinant constructs, vectors, and molecules are also provided. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant via suppression, relative to a control or wild type plant. Methods are further provided for introducing the recombinant DNA constructs, vectors, and molecules into a plant, and planting transgenic plants in the field including at higher densities. Transgenic plants of the present invention may provide greater yield potential than wild type or control plants.Type: ApplicationFiled: October 18, 2017Publication date: April 19, 2018Inventors: Brent BROWER-TOLAND, Shunhong DAI, Karen GABBERT, Alexander GOLDSHMIDT, Miya HOWELL, Brad MCDILL, Dan OVADYA, Beth SAVIDGE, Vijay SHARMA
-
Publication number: 20170260882Abstract: A piston for a hydraulic valve of a rotation phaser, wherein the piston is configured hollow cylindrical, wherein the piston is axially movable in a central opening extending along a first longitudinal axis of a housing of the hydraulic valve, wherein operating connections of the housing are opened and closed according to a position of the piston, wherein the piston includes check valves which prevent an unintentional outflow of a hydraulic fluid flowing through the piston from an inner cavity of the piston in flow through openings of the piston associated with the operating connections, wherein the piston is configured with check valves in its inner cavity that open towards its interior cavity, wherein the check valves are fixated by a spacer element that is arranged between the two check valves. The invention also relates to a hydraulic valve for a rotation phaser of a cam shaft.Type: ApplicationFiled: November 26, 2016Publication date: September 14, 2017Inventors: Brent Brower, Daniel Stanhope
-
Publication number: 20170166912Abstract: The disclosure provides novel corn, tomato, and soybean U6, U3, U2, U5, and 7SL snRNA promoters which are useful for CRISPR/Cas-mediated targeted gene modifications in plants. The disclosure also provides methods for use for U6, U3, U2, U5, and 7SL promoters in driving expression of sgRNA polynucleotides which function in a CRISPR/Cas system of targeted gene modification in plants. The disclosure also provides methods of genome modification by insertion of blunt-end DNA fragments at a site of genomic cleavage.Type: ApplicationFiled: February 27, 2015Publication date: June 15, 2017Inventors: Brent Brower-Toland, Andrei Y. Kouranov, Rosemarie Kuehn, Richard J. Lawrence, Ervin D. Naggy, Linda Rymarquis, Veena Veena
-
Publication number: 20160304891Abstract: The present invention provides recombinant DNA constructs, vectors and molecules comprising a polynucleotide sequence encoding a florigenic FT protein operably linked to a vegetative stage promoter, which may also be a meristem-preferred or meristem-specific promoter. Transgenic plants, plant cells and tissues, and plant parts are further provided comprising a polynucleotide sequence encoding a florigenic FT protein. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant, particularly on the main stem of the plant, relative to a control or wild type plant. Methods are further provided for introducing a florigenic FT transgene into a plant, and planting transgenic FT plants in the field including at higher densities. Transgenic plants of the present invention may thus provide greater yield potential than wild type plants and may be planted at a higher density due to their altered plant architecture.Type: ApplicationFiled: April 18, 2016Publication date: October 20, 2016Applicant: Monsanto Technology LLCInventors: Brent Brower-Toland, Rico A. Caldo, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya D. Howell, Balasulojini Karunanandaa, Sivalinganna Manjunath, Bradley W. McDill, Daniel J. Ovadya, Sasha Preuss, Elena A. Rice, Beth Savidge, Vijay K. Sharma
-
Patent number: 7281523Abstract: High pressure post injection using only one valve is accomplished by fluidly connecting the control valve (76) in a fuel injection pump system (50) to the upper nozzle chamber (70) of a fuel injector (60), and connecting the upper nozzle to a reservoir (80) by way of a restriction. The restriction creates enough residual pressure in the fuel circuit to enable high pressure post injection by closing the control valve (76) a second time.Type: GrantFiled: February 12, 2003Date of Patent: October 16, 2007Assignee: Robert Bosch GmbHInventors: Sree Menon, Brent Brower
-
Publication number: 20060233651Abstract: High pressure post injection using only one valve is accomplished by fluidly connecting the control valve (76) in a fuel injection chamber (70) of a fuel injector (60), and connecting the upper nozzle to a reservoir (80) by way of a restriction. The restriction creates enough residual pressure in the fuel circuit to enable high pressure post injection by closing the control valve (76) a second time.Type: ApplicationFiled: February 12, 2003Publication date: October 19, 2006Inventors: Sree Menon, Brent Brower
-
Publication number: 20050017087Abstract: A body (30) having a conduit (38) adapted for fluid flow under high pressure includes a first passageway (32) having a first longitudinal (33) axis and second passageway (34) having a second longitudinal axis (35). The first and second longitudinal axes intersect each other at an angle. An enlarged generally spherical cavity (36) having a center point (42) at the intersection of the first and second longitudinal axes reduces stress on the walls of the conduit. Particular application is found in a fuel distribution system for an internal combustion engine.Type: ApplicationFiled: November 19, 2002Publication date: January 27, 2005Inventors: Brent Brower, Michael Weston, Tanveer Singh, John Haworth
-
Patent number: 6688578Abstract: An electromagnetic actuator for a fluid pressure control valve in a fuel injector for an internal combustion engine is disclosed. The actuator comprises a valve body having an opening therein and a bore extending at least partially therethrough. A control valve having an armature attached thereto is inserted into the bore in the valve body. A magnetic core, encircled by windings, is located in the opening in the valve body. A valve spring biases the armature away from the magnetic core. The windings, when energized, produce a magnetic circuit that includes the valve body, magnetic core, armature, and retainer ring to attract the armature towards the magnetic core.Type: GrantFiled: January 8, 2003Date of Patent: February 10, 2004Assignee: Robert Bosch GmbHInventors: Randy Nussio, Brent Brower
-
Patent number: 6598579Abstract: A fuel injector pump in a direct-injection fuel delivery system for an internal combustion engine including a solenoid valve for controlling the transfer of fluid from the high pressure chamber of the camshaft driven pump pressure chamber to a fuel injector nozzle. A supply passage accommodates fuel delivery and return for fuel supplied by a fuel pump. A second independent leak flow path is provided to accommodate fuel leaking past a plunger of the high pressure pump, the fuel leak path extending to the fuel supply rather than leaking past the high pressure plunger of the pump to the engine lubrication oil circuit.Type: GrantFiled: January 8, 2001Date of Patent: July 29, 2003Assignee: Diesel Technology CompanyInventors: Scott Goodenough, Thomas Stegink, Brent Brower, Thomas Rapp
-
Publication number: 20020088434Abstract: A fuel injector pump in a direct-injection fuel delivery system for an internal combustion engine including a solenoid valve for controlling the transfer of fluid from the high pressure chamber of the camshaft driven pump pressure chamber to a fuel injector nozzle. A supply passage accommodates fuel delivery and return for fuel supplied by a fuel pump. A second independent leak flow path is provided to accommodate fuel leaking past a plunger of the high pressure pump, the fuel leak path extending to the fuel supply rather than leaking past the high pressure plunger of the pump to the engine lubrication oil circuit.Type: ApplicationFiled: January 8, 2001Publication date: July 11, 2002Inventors: Scott Goodenough, Thomas Stegink, Brent Brower, Thomas Rapp