Patents by Inventor Brett P. Masters

Brett P. Masters has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9164051
    Abstract: In some aspects, an electrically responsive device can include a composite structure having spatially modulated structural properties that includes a substrate material having a surface and defining a plane; an electrically responsive material layer formed over at least a portion of the surface of the substrate material; an electrode material over portions of the electrically responsive material; and a stiffening material disposed along the electrode material, where the stiffening material has a thickness that varies and has regions of increased thickness that correspond with the regions of the composite structure along which the electrode material is disposed. The spatially modulated structural properties can include the regions of the composite structure along which the electrode material is disposed having the increased material stiffness, exclusive of the electrode material, relative to regions of the composite structure that do not include the electrode material.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: October 20, 2015
    Assignee: BioScale, Inc.
    Inventors: Brett P. Masters, Michael F. Miller, Shivalik Bakshi
  • Patent number: 8961902
    Abstract: A system for processing analytes in samples includes an instrument and a cartridge. The cartridge includes fluid inputs, input and output valve assemblies, processing devices, fluid reservoirs, and channels for carrying samples from the fluid inputs to the fluid reservoirs. The valve assemblies include valves adapted to form a sealed fluid chamber in response to force applied by a movable head assembly of the instrument. Each fluid reservoir is adapted to mate and align with an air displacement pump interface member. A valve assembly includes a recess wall surrounding a recess and a valve assembly wall surrounding both the recess and the recess wall. The recess wall and the valve assembly walls are adapted to mate with and seal against a flexible sheet covering the recess, the recess wall, and the valve assembly wall. The cartridge and instrument include complementary features for finely and coarsely aligning instrument assemblies with portions of the cartridge.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: February 24, 2015
    Assignee: BioScale, Inc.
    Inventors: Peter W. Falb, David Brancazio, Eric France, Brett P. Masters, Michael F. Miller, Joshua R. Ormsby, Walker Sloan
  • Publication number: 20140037504
    Abstract: In some aspects, an electrically responsive device can include a composite structure having spatially modulated structural properties that includes a substrate material having a surface and defining a plane; an electrically responsive material layer formed over at least a portion of the surface of the substrate material; an electrode material over portions of the electrically responsive material; and a stiffening material disposed along the electrode material, where the stiffening material has a thickness that varies and has regions of increased thickness that correspond with the regions of the composite structure along which the electrode material is disposed. The spatially modulated structural properties can include the regions of the composite structure along which the electrode material is disposed having the increased material stiffness, exclusive of the electrode material, relative to regions of the composite structure that do not include the electrode material.
    Type: Application
    Filed: September 16, 2013
    Publication date: February 6, 2014
    Inventors: Brett P. Masters, Michael F. Miller, Shivalik Bakshi
  • Patent number: 8536037
    Abstract: Electrically responsive devices and methods for fabricating electrically responsive devices involves applying an electrically responsive material (e.g., an electroactive material) over at least a portion of a surface of a substrate material and applying an electrode material over at least a portion of a surface of the electrically responsive material. At least one region of the electrode material is selectively removed exposing the electrically responsive material. At least some of the electrically responsive material is selectively removed in a region corresponding to the at least one region of the electrode material.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: September 17, 2013
    Assignee: Bioscale, Inc.
    Inventors: Brett P. Masters, Michael F. Miller
  • Patent number: 8492167
    Abstract: Methods and apparatuses for determining whether a fluid has been introduced into an assay measurement apparatus involving delivering a fluid to a surface of a resonant device. The methods also involve monitoring an electrical signal output by the resonant device, wherein properties of the electrical signal vary based on physical properties of the fluid in contact with the surface of the resonant device and determining if the electrical signal output by the resonant device satisfies a predetermined condition indicative of the presence of the fluid.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: July 23, 2013
    Assignee: BioScale, Inc.
    Inventors: Brett P. Masters, Michael F. Miller
  • Patent number: 8475715
    Abstract: A system having reduced gas interference that includes a fluid chamber and a resonant sensor device in fluid communication with a fluid in the fluid chamber. The system includes a fluid control device adapted to change at least one of the fluid flow or pressure within the fluid chamber to achieve substantial wetting of surfaces in proximity to the resonant sensor device. Fluid surfaces of the system can include a material to increase the wettability (e.g., hydrophilicity) of the fluid surfaces.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: July 2, 2013
    Assignee: BioScale, Inc.
    Inventors: Brett P. Masters, Michael F. Miller
  • Patent number: 8435463
    Abstract: An apparatus includes a housing having a support surface to support a cartridge, a socket attached to the housing, and an actuator associated with the socket. The socket surface includes one or more socket positioning members, a plurality of electrical contacts and a plurality of magnets. The socket is configured to move relative to the support surface of the housing, with the one or more socket positioning members located in a fixed relation to the plurality of electrical contacts so that when the socket is spaced proximate to the support surface of the housing, the one or more socket positioning members engage with the one or more cartridge positioning members to align the plurality of electrical contacts of the socket with the plurality of electrical contact pads of the cartridge. The actuator is configured to align each magnet with a respective fluid conduit of the processing device.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: May 7, 2013
    Assignee: BioScale, Inc.
    Inventors: Brett P Masters, Eric France, Peter Wight Falb, Matthew Kavalauskas, David Brancazio
  • Patent number: 8397762
    Abstract: The invention relates to a fluidic system that includes a body structure having a chamber disposed therein. The fluidic system includes at least one fluid input at a first end of the chamber and at least one fluid output at a second end of the chamber. The fluidic system also includes a sensor device (e.g., an acoustic device) having a surface defining a portion of a surface of the chamber. The fluidic system also includes a first surface at the first end of the chamber oriented at an oblique or arcuate (e.g., curved) angle relative to the surface of the sensor device to direct fluid through the chamber.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: March 19, 2013
    Assignee: BioScale, Inc.
    Inventors: Brett P. Masters, Peter Wight Falb, Michael F. Miller
  • Patent number: 8354280
    Abstract: The technology provided herein generally relates to reusable detection surfaces and methods for reusing a detection surface after using the detection surface in an assay for an analyte.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: January 15, 2013
    Assignee: BioScale, Inc.
    Inventors: Jaime E. Arenas, Hyun-Goo Choi, William Matthew Dickerson, Sarah Beth Hembree, Lara Louise Madison, Brett P. Masters, Michael F. Miller, Wayne U. Wang
  • Patent number: 8227261
    Abstract: Methods and apparatuses for performing assays involving binding material elements with a plurality of bonds over a substantial area of a surface of a resonant device establishing a normalized exposure. The methods and apparatuses also involve controlling an external influence applied to the material elements over a first period of time and measuring a signal during a second period of time that is indicative of the change in the amount of material elements bound to the surface relative to the normalized exposure. In some cases, the measured signals are integrated with respect to time to determine the time averaged amount of material elements bound to the surface.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: July 24, 2012
    Assignee: BioScale, Inc.
    Inventors: Brett P. Masters, Michael F. Miller, Alexis F. Sauer-Budge
  • Patent number: 7999440
    Abstract: The invention relates to micro-fabricated devices having a suspended membrane or plate structure and micro-fabrication techniques for making such devices. A substrate defines a cavity passing through the substrate, and the cavity defines a first opening. An intermediate portion is disposed over the substrate and defines a second opening. The second opening is larger in size than the first opening, and the dimensions of the second opening are controlled according to a parameter associated with performance of the device. A membrane is positioned adjacent the second opening.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: August 16, 2011
    Assignee: BioScale, Inc.
    Inventors: Michael Miller, Brett P. Masters
  • Publication number: 20100233031
    Abstract: Methods and apparatus for analyzing bioprocess fluids are provided. A plurality of particles coated with a plurality of capture agents having an affinity for one or more biological markers is combined with bioprocess fluid to form a plurality of analyte-particle complexes. The system also includes a transport arrangement for transporting the sample to a sensor surface, and optionally a magnetic field inducing structure constructed and arranged to establish a magnetic field at and adjacent to the sensor surface. The resonant sensor produces a signal corresponding to an amount of analyte-particle complexes that are bound to the sensor surface.
    Type: Application
    Filed: May 25, 2010
    Publication date: September 16, 2010
    Applicant: BioScale, Inc.
    Inventor: Brett P. Masters
  • Patent number: 7749445
    Abstract: Methods and apparatus for analyzing bioprocess fluids are provided. A plurality of particles coated with a plurality of capture agents having an affinity for one or more biological markers is combined with bioprocess fluid to form a plurality of analyte-particle complexes. The system also includes a transport arrangement for transporting the sample to a sensor surface, and optionally a magnetic field inducing structure constructed and arranged to establish a magnetic field at and adjacent to the sensor surface. The resonant sensor produces a signal corresponding to an amount of analyte-particle complexes that are bound to the sensor surface.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: July 6, 2010
    Assignee: BioScale, Inc.
    Inventor: Brett P. Masters
  • Patent number: 7648844
    Abstract: Methods for detecting analytes in a sample are provided. A plurality of particles, each of which is coated with a capture agent having an affinity for the analyte, is combined with the sample to form a plurality of analyte-particle complexes. The system also includes a transport arrangement for transporting the sample to the sensor surface, and a magnetic field inducing structure constructed and arranged to establish a magnetic field at and adjacent to the sensor surface. The resonant sensor produces a signal corresponding to an amount of analyte-particle complexes that are bound to the sensor surface.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: January 19, 2010
    Assignee: BioScale, Inc.
    Inventors: Alok Srivastava, Wayne U. Wang, Michael Miller, Brett P. Masters, Mark Lundstrom
  • Patent number: 7632638
    Abstract: Methods for detecting viruses are provided. A plurality of particles, each of which is coated with a capture agent having an affinity for the virus, is combined with the sample to form a plurality of analyte-particle complexes. The system also includes a transport arrangement for transporting the sample to the sensor surface, and optionally a magnetic field inducing structure constructed and arranged to establish a magnetic field at and adjacent to the sensor surface. The resonant sensor produces a signal corresponding to an amount of analyte-particle complexes that are bound to the sensor surface.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: December 15, 2009
    Assignee: BioScale, Inc.
    Inventors: Alexis F. Sauer-Budge, Brett P. Masters, Michael Miller, Mark Lundstrom
  • Patent number: 7629137
    Abstract: Methods for detecting bacteria are provided. A plurality of particles, each of which is coated with a capture agent having an affinity for the bacteria, is combined with the sample to form a plurality of analyte-particle complexes. The system also includes a transport arrangement for transporting the sample to the sensor surface, and optionally a magnetic field inducing structure constructed and arranged to establish a magnetic field at and adjacent to the sensor surface. The resonant sensor produces a signal corresponding to an amount of analyte-particle complexes that are bound to the sensor surface.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: December 8, 2009
    Assignee: BioScale, Inc.
    Inventors: Alexis F. Sauer-Budge, Eric Fitch, Brett P. Masters, Michael Miller, Mark Lundstrom
  • Patent number: 7615381
    Abstract: Methods for detecting estradiol and metabolites thereof in a sample are provided. A plurality of particles, each of which is coated with a capture agent having an affinity for estradiol, is combined with the sample to form a plurality of estradiol-particle complexes. The system also includes a transport arrangement for transporting the sample and/or particles to the sensor surface, and optionally a magnetic field inducing structure constructed and arranged to establish a magnetic field at and adjacent to the sensor surface. The resonant sensor produces a signal corresponding to an amount of estradiol-particle complexes that are bound to the sensor surface.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: November 10, 2009
    Assignee: BioScale, Inc.
    Inventors: Brett P. Masters, Michael Miller, Vishal K. Gulati, Mark Lundstrom, Alok Srivastava, Wayne U. Wang
  • Patent number: 7611908
    Abstract: Methods for therapeutic drug monitoring are provided. A plurality of particles, each of which is coated with a capture agent capable of binding a therapeutic drug of choice is combined with the sample to form a plurality of therapeutic drug-particle complexes. The system also includes a transport arrangement for transporting the sample and/or particles to the sensor surface, and optionally a magnetic field inducing structure constructed and arranged to establish a magnetic field at and adjacent to the sensor surface. The resonant sensor produces a signal corresponding to an amount of therapeutic drug-particle complexes that are bound to the sensor surface.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: November 3, 2009
    Assignee: BioScale, Inc.
    Inventors: Michael Miller, Brett P. Masters, Mark Lundstrom, Alok Srivastava, Wayne U. Wang
  • Publication number: 20090269248
    Abstract: A system for processing analytes in samples includes an instrument and a cartridge. The cartridge includes fluid inputs, input and output valve assemblies, processing devices, fluid reservoirs, and channels for carrying samples from the fluid inputs to the fluid reservoirs. The valve assemblies include valves adapted to form a sealed fluid chamber in response to force applied by a movable head assembly of the instrument. Each fluid reservoir is adapted to mate and align with an air displacement pump interface member. A valve assembly includes a recess wall surrounding a recess and a valve assembly wall surrounding both the recess and the recess wall. The recess wall and the valve assembly walls are adapted to mate with and seal against a flexible sheet covering the recess, the recess wall, and the valve assembly wall. The cartridge and instrument include complementary features for finely and coarsely aligning instrument assemblies with portions of the cartridge.
    Type: Application
    Filed: July 17, 2008
    Publication date: October 29, 2009
    Applicant: BioScale, Inc.
    Inventors: Peter W. Falb, David Brancazio, Eric France, Brett P. Masters, Michael F. Miller, Joshua R. Ormsby, Walker Sloan
  • Patent number: 7598094
    Abstract: Methods for detecting cardiac injury by detecting one or more cardiac markers are provided. A plurality of particles, each of which is coated with a capture agent having an affinity for a cardiac marker, is combined with the sample to form a plurality of analyte-particle complexes. The system also includes a transport arrangement for transporting the sample to the sensor surface, and optionally a magnetic field inducing structure constructed and arranged to establish a magnetic field at and adjacent to the sensor surface. The resonant sensor produces a signal corresponding to an amount of analyte-particle complexes that are bound to the sensor surface.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: October 6, 2009
    Assignee: BioScale, Inc.
    Inventors: Brett P. Masters, Michael Miller, Mark Lundstrom