Patents by Inventor Brett T. STAAHL

Brett T. STAAHL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240101984
    Abstract: Provided herein are CasX:gNA systems comprising CasX polypeptides, guide nucleic acids (gNA), and optionally donor template nucleic acids useful in the modification of a SOD1 gene. The systems are also useful for introduction into cells, for example eukaryotic cells having mutations in the SOD1 protein or the SOD1 regulatory element. Also provided are methods of using such CasX:gNA systems to modify cells having such mutations and utility in methods of treatment of a subject with a SOD1-related disease.
    Type: Application
    Filed: February 13, 2023
    Publication date: March 28, 2024
    Inventors: Benjamin OAKES, Sean HIGGINS, Hannah SPINNER, Sarah DENNY, Brett T. STAAHL, Kian TAYLOR, Katherine BANEY, Isabel COLIN, Maroof ADIL, Cole URNES
  • Publication number: 20240100185
    Abstract: Provided herein are Class 2 Type V CRISPR systems comprising CRISPR-Cas polypeptides, (e.g., CasX:gRNA systems comprising CasX polypeptides), guide nucleic acids (gRNA), and optionally donor template nucleic acids, useful in the modification of a PTBP1 gene. The systems are also useful in methods for reprogramming certain eukaryotic cells into functional neurons by the knocking down or knocking out the PTBP1 gene in those cells. Also provided are methods of using such systems in methods of treatment of a subject with a PTBP1-related disease.
    Type: Application
    Filed: December 2, 2021
    Publication date: March 28, 2024
    Inventors: Susan TOM, Oleh KRUPA, Benjamin OAKES, Sean HIGGINS, Sarah DENNY, Brett T. STAAHL, Isabel COLIN, Maroof ADIL
  • Publication number: 20240033377
    Abstract: Provided herein polynucleotides configured for incorporation into recombinant adeno-associated virus (AAV) vectors. The polynucleotides encode for CRISPR proteins, gRNA, and ancillary components of AAV vectors useful in the modification of target nucleic acids. The systems are also useful for introduction into cells, for example eukaryotic cells having mutations in the target nucleic acid of a gene. Also provided are methods of using such AAV vectors to modify cells having such mutations.
    Type: Application
    Filed: December 9, 2021
    Publication date: February 1, 2024
    Inventors: Manuel MOHR, Katherine BANEY, Angus SIDORE, Cécile FORTUNY, Maroof ADIL, Addison WRIGHT, Brett T. STAAHL, Sean HIGGINS, Benjamin OAKES, Suraj MAKHIJA, Sarah DENNY
  • Publication number: 20240026386
    Abstract: Provided herein are systems comprising Class 2, Type V CRISPR polypeptides, guide nucleic acids (gNA), and optionally donor template nucleic acids useful in the modification of a BCL11A gene. The systems are also useful for the modification of cells in subjects with a hemoglobinopathy-related disease. Also provided are methods of treatment of subjects having a hemoglobinopathy-related disease by administration of the systems or nucleic acids encoding such systems that target the BCL11A gene in such subjects.
    Type: Application
    Filed: December 2, 2021
    Publication date: January 25, 2024
    Inventors: Benjamin OAKES, Sean HIGGINS, Sarah DENNY, Brett T. STAAHL, Isabel COLIN, Maroof ADIL, Cole URNES
  • Publication number: 20240026385
    Abstract: Provided herein are engineered Class 2, Type V nucleases and guide RNAs useful for the editing of target nucleic acids. Also provided are methods of making and using such variants to modify nucleic acids.
    Type: Application
    Filed: December 2, 2021
    Publication date: January 25, 2024
    Inventors: Gayathri VIJAYAKUMAR, Sean HIGGINS, Isabel COLIN, Sarah DENNY, Brett T. STAAHL, Benjamin OAKES, Angus SIDORE, Suraj MAKHIJA
  • Publication number: 20230183691
    Abstract: Provided herein are delivery particle systems (XDP) useful for the delivery of payloads of any type. In some embodiments, a XDP particle system with tropism for target cells of interest is used to deliver CRISPR/Cas polypeptides (e.g., CasX proteins) and guide nucleic acids (gNA), for the modification of nucleic acids in target cells. Also provided are methods of making and using such XDP to modify the nucleic acids in such cells.
    Type: Application
    Filed: February 3, 2023
    Publication date: June 15, 2023
    Inventors: Jason FERNANDES, Sean HIGGINS, Isabel COLIN, Hannah SPINNER, Matthew GARDNER, Trent GOMBERG, Gayathri VIJAYAKUMAR, Sarah DENNY, Brett T. STAAHL, Maroof ADIL, Benjamin OAKES, Angus SIDORE, Suraj MAKHIJA
  • Publication number: 20230167424
    Abstract: Provided herein are systems comprising Class2, Type V CRISPR polypeptides, guide nucleic acids (gNA), and optionally donor template nucleic acids useful in the modification of a PCSK9 gene. The systems are also useful for introduction into cells, for example eukaryotic cells having mutations in the PCSK9 gene. Also provided are methods of using such CasX:gNA systems to modify cells having such mutations.
    Type: Application
    Filed: January 8, 2021
    Publication date: June 1, 2023
    Inventors: Benjamin OAKES, Sean HIGGINS, Hannah SPINNER, Sarah DENNY, Brett T. STAAHL, Kian TAYLOR, Katherine BANEY, Isabel COLIN, Maroof ADIL, Cole URNES
  • Publication number: 20230124880
    Abstract: Provided herein are reference guide nucleic acid scaffolds and variants of reference guide nucleic acid scaffolds capable of binding one or more engineered proteins comprising a RuvC cleavage domain. In some embodiments, the variants of the reference guide nucleic acid scaffolds comprise at least one modification compared to the reference guide nucleic acid scaffold sequences and exhibit one or more improved characteristics compared to the reference guide nucleic acid scaffolds.
    Type: Application
    Filed: November 22, 2022
    Publication date: April 20, 2023
    Inventors: Benjamin OAKES, Sean HIGGINS, Hannah SPINNER, Sarah DENNY, Brett T. STAAHL, Kian TAYLOR, Katherine BANEY, Isabel COLIN, Maroof ADIL
  • Patent number: 11613742
    Abstract: Provided herein are CasX:gNA systems comprising CasX polypeptides, guide nucleic acids (gNA), and optionally donor template nucleic acids useful in the modification of a SOD1 gene. The systems are also useful for introduction into cells, for example eukaryotic cells having mutations in the SOD1 protein or the SOD1 regulatory element. Also provided are methods of using such CasX:gNA systems to modify cells having such mutations and utility in methods of treatment of a subject with a SOD1-related disease.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: March 28, 2023
    Assignee: SCRIBE THERAPEUTICS INC.
    Inventors: Benjamin Oakes, Sean Higgins, Hannah Spinner, Sarah Denny, Brett T. Staahl, Kian Taylor, Katherine Baney, Isabel Colin, Maroof Adil, Cole Urnes
  • Publication number: 20230081117
    Abstract: Provided herein are CasX:gNA systems, and compositions and methods relating thereto, the systems comprising CasX proteins, guide nucleic acids (gNAs), and optionally donor template nucleic acids useful for the modification cell genes encoding proteins involved in antigen processing, antigen presentation, antigen recognition, and/or antigen response, as well as methods of producing and using populations of cells comprising these modified genes. In some embodiments, the modified cells further express chimeric antigen receptors (CAR) or engineered T cell receptors (TCR). Such systems are useful for preparing cells for immunotherapy.
    Type: Application
    Filed: September 9, 2020
    Publication date: March 16, 2023
    Inventors: Benjamin OAKES, Sean HIGGINS, Hannah SPINNER, Sarah DENNY, Brett T. STAAHL, Kian TAYLOR, Katherine BANEY, Isabel COLIN, Maroof ADIL, Cole URNES
  • Publication number: 20230054437
    Abstract: Provided herein are engineered Class 2, Type V nucleases and guide RNAs useful for the editing of target nucleic acids. Also provided are methods of making and using such variants to modify nucleic acids.
    Type: Application
    Filed: January 10, 2022
    Publication date: February 23, 2023
    Inventors: Gayathri VIJAYAKUMAR, Sean HIGGINS, Isabel COLIN, Sarah DENNY, Brett T. STAAHL, Benjamin OAKES, Angus SIDORE, Suraj MAKHIJA
  • Publication number: 20230032369
    Abstract: Provided herein are CRISPR:guide systems comprising Class 2 Type V polypeptides (e.g. CasX:gNA systems comprising CasX polypeptides), guide nucleic acids (gNA), and optionally donor template nucleic acids useful in the modification of a HTT gene. The systems are also useful for introduction into cells, for example eukaryotic cells having mutations in the huntingtin protein. Also provided are methods of using such systems to modify cells having such mutations and utility in methods of treatment of a subject with a HTT-related disease, such as Huntington's disease.
    Type: Application
    Filed: May 31, 2022
    Publication date: February 2, 2023
    Inventors: Benjamin OAKES, Sean HIGGINS, Hannah SPINNER, Sarah DENNY, Brett T. STAAHL, Kian TAYLOR, Katherine BANEY, Isabel COLIN, Maroof ADIL, Cole URNES
  • Publication number: 20230033866
    Abstract: Provided herein are Class 2 Type V CRISPR:gNA systems comprising Class 2 Type V CRISPR polypeptides (e.g. CasX), guide nucleic acids (gNA), and optionally donor template nucleic acids useful in the modification of a RHO gene. The systems are also useful for introduction into cells, for example eukaryotic cells having mutations in the rhodopsin protein. Also provided are methods of using such systems to modify cells having such mutations and utility in methods of treatment of a subject with a RHO-related disease, such as retinitis pigmentosa.
    Type: Application
    Filed: December 4, 2020
    Publication date: February 2, 2023
    Inventors: Benjamin OAKES, Hannah SPINNER, Sarah DENNY, Brett T. STAAHL, Kian TAYLOR, Katherine BANEY, Isabel COLIN, Maroof ADIL, Cole URNES, Sean HIGGINS
  • Patent number: 11560555
    Abstract: Provided herein are engineered proteins comprising a RuvC DNA cleavage domain comprising one or more amino acid modifications, and one or more improved characteristics, relative to a naturally occurring RuvC domain. Also provided are gene editing systems comprising engineered proteins, and methods for use thereof.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: January 24, 2023
    Assignee: Scribe Therapeutics Inc.
    Inventors: Benjamin Oakes, Sean Higgins, Hannah Spinner, Sarah Denny, Brett T. Staahl, Kian Taylor, Katherine Baney, Isabel Colin, Maroof Adil
  • Patent number: 11535835
    Abstract: Provided herein are Class 2 Type V CRISPR:gNA systems comprising Class 2 Type V CRISPR polypeptides (e.g. CasX), guide nucleic acids (gNA), and optionally donor template nucleic acids useful in the modification of a RHO gene. The systems are also useful for introduction into cells, for example eukaryotic cells having mutations in the rhodopsin protein. Also provided are methods of using such systems to modify cells having such mutations and utility in methods of treatment of a subject with a RHO-related disease, such as retinitis pigmentosa.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: December 27, 2022
    Assignee: Scribe Therapeutics Inc.
    Inventors: Benjamin Oakes, Hannah Spinner, Sarah Denny, Brett T. Staahl, Kian Taylor, Katherine Baney, Isabel Colin, Maroof Adil, Cole Urnes, Sean Higgins
  • Publication number: 20220348925
    Abstract: Provided herein are CasX:gNA systems comprising CasX polypeptides, guide nucleic acids (gNA), and optionally donor template nucleic acids useful in the modification of a SOD1 gene. The systems are also useful for introduction into cells, for example eukaryotic cells having mutations in the SOD1 protein or the SOD1 regulatory element. Also provided are methods of using such CasX:gNA systems to modify cells having such mutations and utility in methods of treatment of a subject with a SOD1-related disease.
    Type: Application
    Filed: September 9, 2020
    Publication date: November 3, 2022
    Applicant: Scribe Therapeutics Inc.
    Inventors: Benjamin OAKES, Sean HIGGINS, Hannah SPINNER, Sarah DENNY, Brett T. STAAHL, Kian TAYLOR, Katherine BANEY, Isabel COLIN, Maroof ADIL, Cole URNES
  • Publication number: 20220220508
    Abstract: Provided herein are engineered CasX systems and components thereof, including variant CasX proteins and variant guide nucleic acids (gNAs). The variant CasX proteins and variant gNAs of the disclosure display at least one improved characteristic when compared to a reference CasX protein or reference gNA of the disclosure. In some instances, the variants have one or more improved CasX ribonucleoprotein complex functions. Also provided are methods of making and using said variants.
    Type: Application
    Filed: December 3, 2021
    Publication date: July 14, 2022
    Inventors: Benjamin OAKES, Sean HIGGINS, Hannah SPINNER, Sarah DENNY, Brett T. STAAHL, Kian TAYLOR, Katherine BANEY, Isabel COLIN, Maroof ADIL
  • Publication number: 20220090036
    Abstract: Provided herein are CasX:gNA systems comprising CasX polypeptides, guide nucleic acids (gNA), and optionally donor template nucleic acids useful in the modification of a SOD1 gene. The systems are also useful for introduction into cells, for example eukaryotic cells having mutations in the SOD1 protein or the SOD1 regulatory element. Also provided are methods of using such CasX:gNA systems to modify cells having such mutations and utility in methods of treatment of a subject with a SOD1-related disease.
    Type: Application
    Filed: September 23, 2021
    Publication date: March 24, 2022
    Inventors: Benjamin OAKES, Sean HIGGINS, Hannah SPINNER, Sarah DENNY, Brett T. STAAHL, Kian TAYLOR, Katherine BANEY, Isabel COLIN, Maroof ADIL, Cole URNES
  • Publication number: 20220081681
    Abstract: Provided herein are engineered proteins. In some embodiments, the engineered proteins comprise a RuvC DNA cleavage domain comprising one or more modifications, relative to a naturally occurring domain. In some embodiments, the engineered proteins comprise a chimeric domain, for example a chimeric helical I domain. In some embodiments, the engineered proteins are chimeric proteins, comprising at least two domains, each domain derived from a different source, for example derived from SEQ ID NO: 1 and SEQ ID NO: 2. Also provided are systems comprising these engineered proteins, and methods of making and using said engineered proteins.
    Type: Application
    Filed: November 23, 2021
    Publication date: March 17, 2022
    Inventors: Benjamin OAKES, Sean HIGGINS, Hannah SPINNER, Sarah DENNY, Brett T. STAAHL, Kian TAYLOR, Katherine BANEY, Isabel COLIN, Maroof ADIL
  • Patent number: 11118194
    Abstract: The present disclosure provides modified site-directed modifying polypeptides, and ribonucleoproteins comprising the modified polypeptides. The modified site-directed modifying polypeptides are modified for passive entry into target cells. The modified site-directed modifying polypeptides are useful in a variety of methods for target nucleic acid modification, which methods are also provided.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: September 14, 2021
    Assignee: The Regents of the University of California
    Inventors: Jennifer A. Doudna, Brett T. Staahl, Anirvan Ghosh