Patents by Inventor Brett W. Busch

Brett W. Busch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11417661
    Abstract: Some embodiments include an integrated capacitor assembly having a conductive pillar supported by a base, with the conductive pillar being included within a first electrode of a capacitor. The conductive pillar has a first upper surface. A dielectric liner is along an outer surface of the conductive pillar and has a second upper surface. A conductive liner is along the dielectric liner and is included within a second electrode of the capacitor. The conductive liner has a third upper surface. One of the first and third upper surfaces is above the other of the first and third upper surfaces. The second upper surface is at least as high above the base as said one of the first and third upper surfaces. Some embodiments include memory arrays having capacitors with pillar-type first electrodes.
    Type: Grant
    Filed: March 1, 2020
    Date of Patent: August 16, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Matthew N. Rocklein, Brett W. Busch
  • Publication number: 20200203350
    Abstract: Some embodiments include an integrated capacitor assembly having a conductive pillar supported by a base, with the conductive pillar being included within a first electrode of a capacitor. The conductive pillar has a first upper surface. A dielectric liner is along an outer surface of the conductive pillar and has a second upper surface. A conductive liner is along the dielectric liner and is included within a second electrode of the capacitor. The conductive liner has a third upper surface. One of the first and third upper surfaces is above the other of the first and third upper surfaces. The second upper surface is at least as high above the base as said one of the first and third upper surfaces. Some embodiments include memory arrays having capacitors with pillar-type first electrodes.
    Type: Application
    Filed: March 1, 2020
    Publication date: June 25, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Matthew N. Rocklein, Brett W. Busch
  • Patent number: 10600788
    Abstract: Some embodiments include an integrated capacitor assembly having a conductive pillar supported by a base, with the conductive pillar being included within a first electrode of a capacitor. The conductive pillar has a first upper surface. A dielectric liner is along an outer surface of the conductive pillar and has a second upper surface. A conductive liner is along the dielectric liner and is included within a second electrode of the capacitor. The conductive liner has a third upper surface. One of the first and third upper surfaces is above the other of the first and third upper surfaces. The second upper surface is at least as high above the base as said one of the first and third upper surfaces. Some embodiments include memory arrays having capacitors with pillar-type first electrodes.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: March 24, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Matthew N. Rocklein, Brett W. Busch
  • Publication number: 20190027477
    Abstract: Some embodiments include an integrated capacitor assembly having a conductive pillar supported by a base, with the conductive pillar being included within a first electrode of a capacitor. The conductive pillar has a first upper surface. A dielectric liner is along an outer surface of the conductive pillar and has a second upper surface. A conductive liner is along the dielectric liner and is included within a second electrode of the capacitor. The conductive liner has a third upper surface. One of the first and third upper surfaces is above the other of the first and third upper surfaces. The second upper surface is at least as high above the base as said one of the first and third upper surfaces. Some embodiments include memory arrays having capacitors with pillar-type first electrodes.
    Type: Application
    Filed: July 21, 2017
    Publication date: January 24, 2019
    Inventors: GURTEJ S. SANDHU, MATTHEW N. ROCKLEIN, BRETT W. BUSCH
  • Publication number: 20190027478
    Abstract: Some embodiments include an integrated capacitor assembly having a conductive pillar supported by a base, with the conductive pillar being included within a first electrode of a capacitor. The conductive pillar has a first upper surface. A dielectric liner is along an outer surface of the conductive pillar and has a second upper surface. A conductive liner is along the dielectric liner and is included within a second electrode of the capacitor. The conductive liner has a third upper surface. One of the first and third upper surfaces is above the other of the first and third upper surfaces. The second upper surface is at least as high above the base as said one of the first and third upper surfaces. Some embodiments include memory arrays having capacitors with pillar-type first electrodes.
    Type: Application
    Filed: June 8, 2018
    Publication date: January 24, 2019
    Applicant: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Matthew N. Rocklein, Brett W. Busch
  • Patent number: 10177152
    Abstract: Some embodiments include an integrated capacitor assembly having a conductive pillar supported by a base, with the conductive pillar being included within a first electrode of a capacitor. The conductive pillar has a first upper surface. A dielectric liner is along an outer surface of the conductive pillar and has a second upper surface. A conductive liner is along the dielectric liner and is included within a second electrode of the capacitor. The conductive liner has a third upper surface. One of the first and third upper surfaces is above the other of the first and third upper surfaces. The second upper surface is at least as high above the base as said one of the first and third upper surfaces. Some embodiments include memory arrays having capacitors with pillar-type first electrodes.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: January 8, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Matthew N. Rocklein, Brett W. Busch
  • Publication number: 20160027863
    Abstract: A method of forming capacitors includes providing a support material over a substrate. The support material is at least one of semiconductive or conductive. Openings are formed into the support material. The openings include at least one of semiconductive or conductive sidewalls. An insulator is deposited along the semiconductive and/or conductive opening sidewalls. A pair of capacitor electrodes having capacitor dielectric there-between is formed within the respective openings laterally inward of the deposited insulator. One of the pair of capacitor electrodes within the respective openings is laterally adjacent the deposited insulator. Other aspects are disclosed, including integrated circuitry independent of method of manufacture.
    Type: Application
    Filed: July 2, 2015
    Publication date: January 28, 2016
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Brett W. Busch, Mingtao Li, Lequn Jennifer Liu, Kevin R. Shea, Belford T. Coursey, Jonathan T. Doebler
  • Publication number: 20160013191
    Abstract: A capacitor includes a substrate, a multilayer over the substrate, a plurality of container-shaped storage node structures on the semiconductor substrate and surrounded by the multilayer, the storage node structure has a sidewall extending upwardly from the base to the top, where the sidewall includes an upper segment and a lower segment thinner than the upper segment, a capacitor dielectric material along a surface of each storage node structure, and a capacitor electrode material over the capacitor dielectric material.
    Type: Application
    Filed: September 21, 2015
    Publication date: January 14, 2016
    Inventors: Sanjeev Sapra, Brett W. Busch, Jian Li, Chad Patrick Blessing, Greg Allen Funston
  • Patent number: 9230966
    Abstract: A capacitor includes a substrate, a multilayer over the substrate, a plurality of container-shaped storage node structures on the semiconductor substrate and surrounded by the multilayer, the storage node structure has a sidewall extending upwardly from the base to the top, where the sidewall includes an upper segment and a lower segment thinner than the upper segment, a capacitor dielectric material along a surface of each storage node structure, and a capacitor electrode material over the capacitor dielectric material.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: January 5, 2016
    Assignee: NANYA TECHNOLOGY CORP.
    Inventors: Sanjeev Sapra, Brett W. Busch, Jian Li, Chad Patrick Blessing, Greg Allen Funston
  • Publication number: 20150294971
    Abstract: A capacitor includes a substrate, a multilayer over the substrate, a plurality of container-shaped storage node structures on the semiconductor substrate and surrounded by the multilayer, the storage node structure has a sidewall extending upwardly from the base to the top, where the sidewall includes an upper segment and a lower segment thinner than the upper segment, a capacitor dielectric material along a surface of each storage node structure, and a capacitor electrode material over the capacitor dielectric material.
    Type: Application
    Filed: April 9, 2014
    Publication date: October 15, 2015
    Applicant: NANYA TECHNOLOGY CORP.
    Inventors: Sanjeev Sapra, Brett W. Busch, Jian Li, Chad Patrick Blessing, Greg Allen Funston
  • Patent number: 9076680
    Abstract: A method of forming capacitors includes providing a support material over a substrate. The support material is at least one of semiconductive or conductive. Openings are formed into the support material. The openings include at least one of semiconductive or conductive sidewalls. An insulator is deposited along the semiconductive and/or conductive opening sidewalls. A pair of capacitor electrodes having capacitor dielectric there-between is formed within the respective openings laterally inward of the deposited insulator. One of the pair of capacitor electrodes within the respective openings is laterally adjacent the deposited insulator. Other aspects are disclosed, including integrated circuitry independent of method of manufacture.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: July 7, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Brett W. Busch, Mingtao Li, Jennifer Lequn Liu, Kevin R. Shea, Belford T. Coursey, Jonathan T. Doebler
  • Patent number: 8691656
    Abstract: The invention includes methods of electrically interconnecting different elevation conductive structures, methods of forming capacitors, methods of forming an interconnect between a substrate bit line contact and a bit line in DRAM, and methods of forming DRAM memory cells. In one implementation, a method of electrically interconnecting different elevation conductive structures includes forming a first conductive structure comprising a first electrically conductive surface at a first elevation of a substrate. A nanowhisker is grown from the first electrically conductive surface, and is provided to be electrically conductive. Electrically insulative material is provided about the nanowhisker. An electrically conductive material is deposited over the electrically insulative material in electrical contact with the nanowhisker at a second elevation which is elevationally outward of the first elevation, and the electrically conductive material is provided into a second conductive structure.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: April 8, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Brett W. Busch, David K. Hwang, F. Daniel Gealy
  • Patent number: 8512582
    Abstract: A method of patterning a substrate in accordance with an embodiment of the invention includes forming a plurality of openings within at least one of photoresist and amorphous carbon. The openings are of common outermost cross sectional shape relative one another. Individual of the openings have at least one lateral open dimension having a degree of variability among the plurality. The photoresist with the plurality of openings is exposed to/treated with a plasma effective to both increase the lateral open size of the openings and at least reduce the degree of variability of said at least one open dimension among the openings. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: August 20, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Mark Kiehlbauch, Brett W. Busch, Tuman Earl Allen
  • Publication number: 20130093050
    Abstract: A method of forming capacitors includes providing a support material over a substrate. The support material is at least one of semiconductive or conductive. Openings are formed into the support material. The openings include at least one of semiconductive or conductive sidewalls. An insulator is deposited along the semiconductive and/or conductive opening sidewalls. A pair of capacitor electrodes having capacitor dielectric there-between is formed within the respective openings laterally inward of the deposited insulator. One of the pair of capacitor electrodes within the respective openings is laterally adjacent the deposited insulator. Other aspects are disclosed, including integrated circuitry independent of method of manufacture.
    Type: Application
    Filed: October 18, 2011
    Publication date: April 18, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Brett W. Busch, Mingtao Li, Jennifer Lequn Liu, Kevin R. Shea, Belford T. Coursey, Jonathan T. Doebler
  • Publication number: 20110318921
    Abstract: The invention includes methods of electrically interconnecting different elevation conductive structures, methods of forming capacitors, methods of forming an interconnect between a substrate bit line contact and a bit line in DRAM, and methods of forming DRAM memory cells. In one implementation, a method of electrically interconnecting different elevation conductive structures includes forming a first conductive structure comprising a first electrically conductive surface at a first elevation of a substrate. A nanowhisker is grown from the first electrically conductive surface, and is provided to be electrically conductive. Electrically insulative material is provided about the nanowhisker. An electrically conductive material is deposited over the electrically insulative material in electrical contact with the nanowhisker at a second elevation which is elevationally outward of the first elevation, and the electrically conductive material is provided into a second conductive structure.
    Type: Application
    Filed: September 7, 2011
    Publication date: December 29, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Brett W. Busch, David K. Hwang, F. Daniel Gealy
  • Patent number: 8030168
    Abstract: The invention includes methods of electrically interconnecting different elevation conductive structures, methods of forming capacitors, methods of forming an interconnect between a substrate bit line contact and a bit line in DRAM, and methods of forming DRAM memory cells. In one implementation, a method of electrically interconnecting different elevation conductive structures includes forming a first conductive structure comprising a first electrically conductive surface at a first elevation of a substrate. A nanowhisker is grown from the first electrically conductive surface, and is provided to be electrically conductive. Electrically insulative material is provided about the nanowhisker. An electrically conductive material is deposited over the electrically insulative material in electrical contact with the nanowhisker at a second elevation which is elevationally outward of the first elevation, and the electrically conductive material is provided into a second conductive structure.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: October 4, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Brett W. Busch, David K. Hwang, F. Daniel Gealy
  • Publication number: 20100065531
    Abstract: A method of patterning a substrate in accordance with an embodiment of the invention includes forming a plurality of openings within at least one of photoresist and amorphous carbon. The openings are of common outermost cross sectional shape relative one another. Individual of the openings have at least one lateral open dimension having a degree of variability among the plurality. The photoresist with the plurality of openings is exposed to/treated with a plasma effective to both increase the lateral open size of the openings and at least reduce the degree of variability of said at least one open dimension among the openings. Other aspects and implementations are contemplated.
    Type: Application
    Filed: September 15, 2008
    Publication date: March 18, 2010
    Inventors: Mark Kiehlbauch, Brett W. Busch, Tuman Earl Allen
  • Publication number: 20090197386
    Abstract: The invention includes methods of electrically interconnecting different elevation conductive structures, methods of forming capacitors, methods of forming an interconnect between a substrate bit line contact and a bit line in DRAM, and methods of forming DRAM memory cells. In one implementation, a method of electrically interconnecting different elevation conductive structures includes forming a first conductive structure comprising a first electrically conductive surface at a first elevation of a substrate. A nanowhisker is grown from the first electrically conductive surface, and is provided to be electrically conductive. Electrically insulative material is provided about the nanowhisker. An electrically conductive material is deposited over the electrically insulative material in electrical contact with the nanowhisker at a second elevation which is elevationally outward of the first elevation, and the electrically conductive material is provided into a second conductive structure.
    Type: Application
    Filed: April 6, 2009
    Publication date: August 6, 2009
    Inventors: Brett W. Busch, David K. Hwang, F. Daniel Gealy
  • Patent number: 7538036
    Abstract: A patterned mask can be formed as follows. A first patterned photoresist is formed over a masking layer and utilized during a first etch into the masking layer. The first etch extends to a depth in the masking layer that is less than entirely through the masking layer. A second patterned photoresist is subsequently formed over the masking layer and utilized during a second etch into the masking layer. The combined first and second etches form openings extending entirely through the masking layer and thus form the masking layer into the patterned mask. The patterned mask can be utilized to form a pattern in a substrate underlying the mask. The pattern formed in the substrate can correspond to an array of capacitor container openings. Capacitor structure can be formed within the openings. The capacitor structures can be incorporated within a DRAM array.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: May 26, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Brett W. Busch, Luan C. Tran, Ardavan Niroomand, Fred D. Fishburn, Yoshiki Hishiro, Ulrich C. Boettiger, Richard D. Holscher
  • Patent number: 7445990
    Abstract: A plurality of capacitor electrode openings is formed within capacitor electrode-forming material. A first set of the openings is formed to a depth which is greater within the capacitor electrode-forming material than is a second set of the openings. Conductive first capacitor electrode material is formed therein. A sacrificial retaining structure is formed elevationally over both the first capacitor electrode material and the capacitor electrode-forming material, leaving some of the capacitor electrode-forming material exposed. With the retaining structure in place, at least some of the capacitor electrode-forming material is etched from the substrate effective to expose outer sidewall surfaces of the first capacitor electrode material.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: November 4, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Brett W. Busch, Fred D. Fishburn, James Rominger