Patents by Inventor Brian A. Naughton

Brian A. Naughton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6218182
    Abstract: A tissue engineering bioreactor is disclosed for growing three-dimensional tissue. Cells are seeded onto a mesh and provided with two media flows, each contacting a different side of the cells. The media flows contain different concentrations of nutrients, allowing nutrients to be delivered to the cells by diffusion gradient. The bioreactor can be used to grow liver tissue, and designed as an extracorporeal liver assist device in which blood or plasma is exposed to the three-dimensional liver tissue. The blood or plasma from a patient directed to flow against the liver tissue. The liver tissue is further exposed on its opposite side to media providing nutrients and gases. The device provides porous boundaries between the blood or plasma, tissue, and media; allowing nutrient and protein delivery by diffusion gradient to dialyze a patient's blood.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: April 17, 2001
    Assignee: Advanced Tissue Sciences
    Inventors: Brian A. Naughton, Craig R. Halberstadt, Benson Sibanda
  • Patent number: 6140039
    Abstract: A stromal cell-based three-dimensional cell culture system is provided which can be used to culture a variety of different cells and tissues in vitro for prolonged periods of time. The stromal cells along with connective tissue proteins naturally secreted by the stromal cells attach to and substantially envelope a framework composed of a biocompatible non-living material formed into a three-dimensional structure having interstitial spaces bridged by the stromal cells. Living stromal tissue so formed provides support, growth factors, and regulatory factors necessary to sustain long-term active proliferation of cells in culture and/or cultures implanted in vivo. When grown in this three-dimensional system, the proliferating cells mature and segregate properly to form components of adult tissues analogous to counterparts in vivo, which can be utilized in the body as a corrective tissue.
    Type: Grant
    Filed: January 25, 1999
    Date of Patent: October 31, 2000
    Assignee: Advanced Tissue Sciences, Inc.
    Inventors: Gail K. Naughton, Brian A. Naughton
  • Patent number: 6022743
    Abstract: A stromal cell-based three-dimensional cell culture system is prepared which can be used to culture a variety of different cells and tissues in vitro for prolonged periods of time. The stromal cells and connective tissue proteins naturally secreted by the stromal cells attach to and substantially envelope a framework composed of a biocompatible non-living material formed into a three-dimensional structure having interstitial spaces bridged by the stromal cells. The living stromal tissue so formed provides the support, growth factors, and regulatory factors necessary to sustain long-term active proliferation of cells in culture and/or cultures implanted in vivo. When grown in this three-dimensional system, the proliferating cells mature and segregate properly to form components of adult tissues analogous to counterparts in vivo, which can be utilized in the body as a corrective tissue.
    Type: Grant
    Filed: March 8, 1999
    Date of Patent: February 8, 2000
    Assignee: Advanced Tissue Sciences, Inc.
    Inventors: Gail K. Naughton, Brian A. Naughton
  • Patent number: 6008049
    Abstract: A tissue engineering bioreactor is disclosed for growing three-dimensional tissue. Cells are seeded onto a mesh and provided with two media flows, each contacting a different side of the cells. The media flows contain different concentrations of nutrients, allowing nutrients to be delivered to the cells by diffusion gradient. The bioreactor can be used to grow liver tissue, and designed as an extracorporeal liver assist device in which blood or plasma is exposed to the three-dimensional liver tissue. The blood or plasma from a patient directed to flow against the liver tissue. The liver tissue is further exposed on its opposite side to media providing nutrients and gases. The device provides porous boundaries between the blood or plasma, tissue, and media, allowing nutrient and protein delivery by diffusion gradient to dialyze a patient's blood.
    Type: Grant
    Filed: August 19, 1998
    Date of Patent: December 28, 1999
    Assignee: Advanced Tissue Sciences, Inc.
    Inventors: Brian A. Naughton, Craig R. Halberstadt, Benson Sibanda
  • Patent number: 5962325
    Abstract: The present invention relates to a method of stimulating the proliferation and appropriate cell maturation of a variety of different cells and tissues in three-dimensional cultures in vitro using TGF-.beta. in the culture medium. In accordance with the invention, stromal cells, including, but not limited to, chondrocytes, chondrocyte-progenitors, fibroblasts, fibroblast-like cells, umbilical cord cells or bone marrow cells from umbilical cord blood are inoculated and grown on a three-dimensional framework in the presence of TGF-.beta.. Stromal cells may also include other cells found in loose connective tissue such as endothelial cells, macrophages/monocytes, adipocytes, pericytes, reticular cells found in bone marrow stroma, etc.
    Type: Grant
    Filed: September 18, 1998
    Date of Patent: October 5, 1999
    Assignee: Advanced Tissue Sciences, Inc.
    Inventors: Gail K. Naughton, Brian A. Naughton
  • Patent number: 5919702
    Abstract: The invention relates to the isolation and use of pre-chondrocytes from the umbilical cord, specifically from Wharton's jelly, that give rise to chondrocytes which produce cartilage. The isolated pre-chondrocytes, or the chondrocytes to which they give rise, can be mitotically expanded in culture and used in the production of new cartilage tissue for therapeutic use. "Banks" of pre-chondrocytes or chondrocytes can be stored frozen, and thawed and used to produce new cartilage tissue as needed.
    Type: Grant
    Filed: October 23, 1996
    Date of Patent: July 6, 1999
    Assignee: Advanced Tissue Science, Inc.
    Inventors: Anthony F. Purchio, Brian A. Naughton, Julia San Roman
  • Patent number: 5902741
    Abstract: The present invention relates to a method of stimulating the proliferation and appropriate cell maturation of a variety of different cells and tissues in three-dimensional cultures in vitro using TGF-.beta. in the culture medium. In accordance with the invention, stromal cells, including, but not limited to, chondrocytes, chondrocyte-progenitors, fibroblasts, fibroblast-like cells, umbilical cord cells or bone marrow cells from umbilical cord blood are inoculated and grown on a three-dimensional framework in the presence of TGF-.beta.. Stromal cells may also include other cells found in loose connective tissue such as endothelial cells, macrophages/monocytes, adipocytes, pericytes, reticular cells found in bone marrow stroma, etc.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: May 11, 1999
    Assignee: Advanced Tissue Sciences, Inc.
    Inventors: Anthony F. Purchio, Michael Zimber, Noushin Dunkelman, Gail K. Naughton, Brian A. Naughton
  • Patent number: 5863531
    Abstract: A stromal cell-based three-dimensional cell culture system is provided which can be used to culture a variety of different cells and tissues in vitro for prolonged periods of time. The stromal cells along with connective tissue proteins naturally secreted by the stromal cells attach to and substantially envelope a framework composed of a biocompatible non-living material formed into a three-dimensional structure having interstitial spaces bridged by the stromal cells. Living stromal tissue so formed provides support, growth factors, and regulatory factors necessary to sustain long-term active proliferation of cells in culture and/or cultures implanted in vivo. When grown in this three-dimensional system, the proliferating cells mature and segregate properly to form components of adult tissues analogous to counterparts in vivo, which can be utilized in the body as a corrective tissue.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: January 26, 1999
    Assignee: Advanced Tissue Sciences, Inc.
    Inventors: Gail K. Naughton, Brian A. Naughton
  • Patent number: 5858721
    Abstract: The present invention relates to a three-dimensional cell culture system which can be used to culture a variety of different cells and tissues in vitro for prolonged periods of time. In accordance with the invention, cells derived from a desired tissue are inoculated and grown on a pre-established stromal support matrix. The stromal support matrix comprises stromal cells, such as fibroblasts actively growing on a three-dimensional matrix. Stromal cells may also include other cells found in loose connective tissue such as endothelial cells, macrophages/monocytes, adipocytes, pericytes, reticular cells found in bone marrow stroma, etc. The stromal matrix provides the support, growth factors, and regulatory factors necessary to sustain long-term active proliferation of cells in culture. When grown in this three-dimensional system, the proliferating cells mature and segregate properly to form components of adult tissues analogous to counterparts found in vivo.
    Type: Grant
    Filed: November 25, 1997
    Date of Patent: January 12, 1999
    Assignee: Advanced Tissue Sciences, Inc.
    Inventors: Gail K. Naughton, Brian A. Naughton
  • Patent number: 5849588
    Abstract: The present invention relates to a three-dimensional cell and tissue culture system. In particular, it relates to this culture system for the long term culture of liver cells and tissues in vitro in an environment that more closely approximates that found in vivo. The culture system described herein provides for proliferation and appropriate liver cell maturation to form structures analogous to tissue counterparts in vivo. The resulting liver tissues survive for prolonged periods, perform liver-specific functions, and maintain hepatic tissue architecture following in vivo implantation.The liver cultures have a variety of applications ranging from transplantation or implantation in vivo, to screening cytotoxic compounds and pharmaceutical compounds in vitro, to the production of biologically active molecules in "bioreactors" and to the construction of extracorporeal liver assist device.
    Type: Grant
    Filed: August 1, 1996
    Date of Patent: December 15, 1998
    Assignee: Advanced Tissue Sciences, Inc.
    Inventors: Brian A. Naughton, Gail K. Naughton
  • Patent number: 5827729
    Abstract: A tissue engineering bioreactor is disclosed for growing three-dimensional tissue. Cells are seeded onto a mesh and provided with two media flows, each contacting a different side of the cells. The media flows contain different concentrations of nutrients, allowing nutrients to be delivered to the cells by diffusion gradient. The bioreactor can be used to grow liver tissue, and designed as an extracorporeal liver assist device in which blood or plasma is exposed to the three-dimensional liver tissue. The blood or plasma from a patient directed to flow against the liver tissue. The liver tissue is further exposed on its opposite side to media providing nutrients and gases. The device provides porous boundaries between the blood or plasma, tissue, and media, allowing nutrient and protein delivery by diffusion gradient to dialyze a patient's blood.
    Type: Grant
    Filed: April 23, 1996
    Date of Patent: October 27, 1998
    Assignee: Advanced Tissue Sciences
    Inventors: Brian A. Naughton, Craig R. Halberstadt, Benson Sibanda
  • Patent number: 5785964
    Abstract: The present invention relates to a three-dimensional cell culture system which can be used to culture a variety of different cells and tissues in vitro for prolonged periods of time. In accordance with the invention, cells derived from a desired tissue are inoculated and grown on a pre-established stromal support matrix. The stromal support matrix comprises stromal cells, such as fibroblasts actively growing on a three-dimensional matrix. Stromal cells may also include other cells found in loose connective tissue such as endothelial cells, macrophages/monocytes, adipocytes, pericytes, reticular cells found in bone marrow stroma, etc. The stromal matrix provides the support, growth factors, and regulatory factors necessary to sustain long-term active proliferation of cells in culture. When grown in this three-dimensional system, the proliferating cells mature and segregate properly to form components of adult tissues analogous to counterparts found in vivo.
    Type: Grant
    Filed: April 6, 1995
    Date of Patent: July 28, 1998
    Assignee: Advanced Tissue Sciences, Inc.
    Inventors: Gail K. Naughton, Brian A. Naughton
  • Patent number: 5624840
    Abstract: The present invention relates to a three-dimensional cell and tissue culture system. In particular, it relates to this culture system for the long term culture of liver cells and tissues in vitro in an environment that more closely approximates that found in vivo. The culture system described herein provides for proliferation and appropriate liver cell maturation to form structures analogous to tissue counterparts in vivo. The resulting liver tissues survivo for prolonged periods, perform liver-specific functions, and maintain hepatic tissue architecture following in vivo implantation. The liver cultures have a variety of applications ranging from transplantation or implantation in vivo, to screening cytotoxic compounds and pharmaceutical compounds in vitro, to the production of biologically active molecules in "bioreactors" and to the construction of extracorporeal liver assist device.
    Type: Grant
    Filed: May 31, 1995
    Date of Patent: April 29, 1997
    Assignee: Advanced Tissue Sciences Inc.
    Inventors: Brian A. Naughton, Gail K. Naughton
  • Patent number: 5580781
    Abstract: The present invention relates to a three-dimensional cell culture system which can be used to culture a variety of different cells and tissues in vitro for prolonged periods of time. In accordance with the invention, cells derived from a desired tissue are inoculated and grown on a pre-established stromal support matrix. The stromal support matrix comprises stromal cells, such as fibroblasts actively growing on a three-dimensional matrix. Stromal cells may also include other cells found in loose connective tissue such as endothelial cells, macrophages/monocytes, adipocytes, pericytes, reticular cells found in bone marrow stroma, etc. The stromal matrix provides the support, growth factors, and regulatory factors necessary to sustain long-term active proliferation of cells in culture. When grown in this three-dimensional system, the proliferating cells mature and segregate properly to form components of adult tissues analogous to counterparts found in vivo.
    Type: Grant
    Filed: April 6, 1995
    Date of Patent: December 3, 1996
    Assignee: Advanced Tissue Sciences, Inc.
    Inventors: Gail K. Naughton, Brian A. Naughton
  • Patent number: 5578485
    Abstract: The present invention relates to a three-dimensional cell culture system which can be used to culture a variety of different cells and tissues in vitro for prolonged periods of time. In accordance with the invention, cells derived from a desired tissue are inoculated and grown on a pre-established stromal support matrix. The stromal support matrix comprises stromal cells, such as fibroblasts actively growing on a three-dimensional matrix. Stromal cells may also include other cells found in loose connective tissue such as endothelial cells, macrophages/monocytes, adipocytes, pericytes, reticular cells found in bone marrow stroma, etc. The stromal matrix provides the support, growth factors, and regulatory factors necessary to sustain long-term active proliferation of cells in culture. When grown in this three-dimensional system, the proliferating cells mature and segregate properly to form components of adult tissues analogous to counterparts found in vivo.
    Type: Grant
    Filed: April 6, 1995
    Date of Patent: November 26, 1996
    Assignee: Advanced Tissue Sciences, Inc.
    Inventors: Gail K. Naughton, Brian A. Naughton
  • Patent number: 5559022
    Abstract: The present invention relates to liver reserve or progenitor cells. In particular, it relates to the isolation, characterization, culturing, and uses of liver reserve cells. Liver reserve cells isolated by density gradient centrifugation can be distinguished from other liver parenchymal cells by their morphology, staining characteristics, high proliferative activity and ability to differentiate in vitro. In long-term cultures described herein, these cells expand in numbers and differentiate into morphologically mature liver parenchymal cells, capable of mediating liver-specific functions. Therefore, isolated liver reserve cells may have a wide range of applications, including, but not limited to, their uses as vehicles of exogenous genes in gene therapy, and/or to replace and reconstitute a destroyed, infected, or genetically deficient mammalian liver by transplantation.
    Type: Grant
    Filed: January 26, 1995
    Date of Patent: September 24, 1996
    Assignee: Advanced Tissue Sciences, Inc.
    Inventors: Brian A. Naughton, Benson Sibanda
  • Patent number: 5541107
    Abstract: The present invention relates to a three-dimensional cell culture system which can be used to culture a variety of different cells and tissues in vitro for prolonged periods of time. In accordance with the invention, cells derived from a desired tissue are inoculated and grown on a pre-established stromal support matrix. The stromal support matrix comprises stromal cells, such as fibroblasts actively growing on a three-dimensional matrix. Stromal cells may also include other cells found in loose connective tissue such as endothelial cells, macrophages/monocytes, adipocytes, pericytes, reticular cells found in bone marrow stroma, etc. The stromal matrix provides the support, growth factors, and regulatory factors necessary to sustain long-term active proliferation of cells in culture. When grown in this three-dimensional system, the proliferating cells mature and segregate properly to form components of adult tissues analogous to counterparts found in vivo.
    Type: Grant
    Filed: April 6, 1995
    Date of Patent: July 30, 1996
    Assignee: Advanced Tissue Sciences, Inc.
    Inventors: Gail K. Naughton, Brian A. Naughton
  • Patent number: 5518915
    Abstract: The present invention relates to a three-dimensional cell culture system which can be used to culture a variety of different cells and tissues in vitro for prolonged periods of time. In accordance with the invention, cells derived from a desired tissue are inoculated and grown on a pre-established stromal support matrix. The stromal support matrix comprises stromal cells, such as fibroblasts actively growing on a three-dimensional matrix. Stromal cells may also include other cells found in loose connective tissue such as endothelial cells, macrophages/monocytes, adipocytes, pericytes, reticular cells found in bone marrow stroma, etc. The stromal matrix provides the support, growth factors, and regulatory factors necessary to sustain long-term active proliferation of cells in culture. When grown in this three-dimensional system, the proliferating cells mature and segregate properly to form components of adult tissues analogous to counterparts found in vivo.
    Type: Grant
    Filed: April 6, 1995
    Date of Patent: May 21, 1996
    Assignee: Advanced Tissue Sciences, Inc.
    Inventors: Gail K. Naughton, Brian A. Naughton
  • Patent number: 5516680
    Abstract: The present invention relates to a three-dimensional cell culture system which can be used to culture a variety of different cells and tissues in vitro for prolonged periods of time. In accordance with the invention, cells derived from a desired tissue are inoculated and grown on a pre-established stromal support matrix. The stromal support matrix comprises stromal cells, such as fibroblasts actively growing on a three-dimensional matrix. Stromal cells may also include other cells found in loose connective tissue such as endothelial cells, macrophages/monocytes, adipocytes, pericytes, reticular cells found in bone marrow stroma, etc. The stromal matrix provides the support, growth factors, and regulatory factors necessary to sustain long-term active proliferation of cells in culture. When grown in this three-dimensional system, the proliferating cells mature and segregate properly to form components of adult tissues analogous to counterparts found in vivo.
    Type: Grant
    Filed: April 6, 1995
    Date of Patent: May 14, 1996
    Assignee: Advanced Tissue Sciences, Inc. formerly Marrow-Tech
    Inventors: Gail K. Naughton, Brian A. Naughton
  • Patent number: 5516681
    Abstract: The present invention relates to a three-dimensional cell culture system which can be used to culture a variety of different cells and tissues in vitro for prolonged periods of time. In accordance with the invention, cells derived from a desired tissue are inoculated and grown on a pre-established stromal support matrix. The stromal support matrix comprises stromal cells, such as fibroblasts actively growing on a three-dimensional matrix. Stromal cells may also include other cells found in loose connective tissue such as endothelial cells, macrophages/monocytes, adipocytes, pericytes, reticular cells found in bone marrow stroma, etc. The stromal matrix provides the support, growth factors, and regulatory factors necessary to sustain long-term active proliferation of cells in culture. When grown in this three-dimensional system, the proliferating cells mature and segregate properly to form components of adult tissues analogous to counterparts found in vivo.
    Type: Grant
    Filed: April 6, 1995
    Date of Patent: May 14, 1996
    Assignee: Advanced Tissue Sciences, Inc.
    Inventors: Gail K. Naughton, Brian A. Naughton