Patents by Inventor Brian D. Black

Brian D. Black has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240148402
    Abstract: A surgical instrument includes an end effector having a clamp arm pivotable relative to an ultrasonic blade, an articulation section configured to deflect the end effector, an acoustic waveguide having a distal portion extending along an axis, a clamp arm closure assembly comprising a body configured to actuate in order to drive the pivoting of the clamp arm, and a clamp arm clocking assembly. The clamp arm clocking assembly is capable of driving rotation of the clamp arm about the axis relative to the ultrasonic blade between a first clocked position and a second clocked position. The clamp arm clocking assembly includes a rotating body pivotally coupled with the clamp arm, a translating drive extending through the articulation section, and a rotation driver assembly. The rotation driver is in communication with the translating driver to convert translational motion of the translating driver into rotational motion of the rotating body.
    Type: Application
    Filed: January 16, 2024
    Publication date: May 9, 2024
    Inventors: Jeffrey L. Clark, Morgan R. Hunter, Brian D. Black, Thomas B. Remm
  • Patent number: 11963691
    Abstract: A surgical instrument, has an end effector that includes an ultrasonic blade, and a clamp arm that moves relative to the ultrasonic blade from an opened position toward an intermediate position and a closed position. The clamp arm is offset from the ultrasonic blade to define a predetermined gap in the intermediate position between the opened position and the closed position. A clamp arm actuator connects to the clamp arm and moves from an opened configuration to a closed configuration to direct the clamp arm from the opened position toward the intermediate position and the closed position. A spacer connects with the clamp arm to inhibit movement of the clamp arm from the intermediate position toward the closed position for maintaining the predetermined gap between the clamp arm and the ultrasonic blade.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: April 23, 2024
    Assignee: Cilag GmbH International
    Inventors: Ryan M. Asher, Brian D. Black, John E. Brady, Joseph Dennis, Geni M. Giannotti, Bryce L. Heitman, Timothy S. Holland, Joseph E. Hollo, Andrew Kolpitcke, Amy M. Krumm, Jason R. Lesko, Matthew C. Miller, David A. Monroe, Ion V. Nicolaescu, Rafael J. Ruiz Ortiz, Matthew S. Schneider, Richard C. Smith, Shawn C. Snyder, Sarah A. Worthington, Monica L. Rivard, Fajian Zhang
  • Patent number: 11950798
    Abstract: An ultrasonic surgical instrument that can be used in a robotic surgical system includes an end effector having an ultrasonic blade and a clamp arm pivotally secured relative to the ultrasonic blade. A shaft assembly extends proximally from the end effector and includes a tube, an acoustic waveguide received within the tube, and a sheath positioned between the acoustic waveguide and the tube to damp acoustic vibrations from the acoustic waveguide toward the tube. At least one sensor is positioned on at least one of the end effector or the sheath to measure a force applied at the end effector or the sheath as a measured force, respectively, and thereby provide real-time feedback of a non-clamping force applied against one of the ultrasonic blade or the clamp arm.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: April 9, 2024
    Assignee: Cilag GmbH International
    Inventors: Brian D. Black, Matthew T. Stone, Andrew T. Beckman, Charles J. Scheib
  • Patent number: 11937892
    Abstract: A surgical instrument includes a drive housing, a spline, a carriage, an elongate shaft assembly, an end effector, and an activating mechanism. The at least one spline includes a drive gear rotatable with the spline. The elongate shaft assembly extends from the carriage. The activating mechanism includes a barrel cam extending along a rotational axis and having a first cam profile radially extending about the rotational axis. The barrel cam is operatively coupled to the drive gear such that rotation of the drive gear is configured to actuate the activating mechanism to move at least a portion of the end effector. The first cam profile defines a plurality of slopes relative to the rotational axis such that the first cam profile is configured to drive movement of the end effector or the elongate shaft assembly at different rates according to the plurality of slopes.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: March 26, 2024
    Assignee: Cilag GmbH International
    Inventors: Brian D. Black, Charles J. Scheib, Matthew T. Stone, Mark D. Overmyer, Christopher A. Denzinger, Andrew T. Beckman, Neil T. Markwardt
  • Patent number: 11931059
    Abstract: An ultrasonic surgical instrument including an end effector having an ultrasonic blade, a shaft assembly that defines a longitudinal axis proximally extending from the end effector and an ultrasonic transducer assembly proximally extending from an acoustic waveguide in communication with the ultrasonic blade. The ultrasonic surgical instrument also includes a housing proximally projecting from the shaft assembly such that the ultrasonic transducer assembly is positioned within the housing and a carrier moveably supports the ultrasonic transducer assembly along the longitudinal axis. The carrier collectively moves the ultrasonic transducer assembly, the acoustic waveguide, and the end effector relative to the housing from a proximal, retracted position to a distal, extended position, for inserting the ultrasonic blade into a patient.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: March 19, 2024
    Assignee: Cilag GmbH International
    Inventors: Brian D. Black, Andrew T. Beckman, Matthew T. Stone, Charles J. Scheib
  • Patent number: 11925378
    Abstract: An ultrasonic surgical device is disclosed including a surgical tool including a proximal transducer mounting portion defining a surface, a distal end effector end, and a waveguide disposed therebetween, the waveguide extending along a longitudinal axis. The ultrasonic surgical device further includes a transducer is in mechanical communication with the surface of the transducer mounting portion. The transducer is configured to operate in a D31 mode with respect to the longitudinal axis of the waveguide. Upon activation by an electrical signal having a predetermined frequency component, the transducer is configured to induce a standing wave in the surgical tool to cause the end effector to vibrate, the standing wave having a wavelength proportional to the predetermined frequency component of the electrical signal.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: March 12, 2024
    Assignee: Cilag GmbH International
    Inventors: Jeffrey D. Messerly, Brian D. Black, William A. Olson, Foster B. Stulen, Frederick Estera, William E. Clem, Jerome R. Morgan, Jeffrey L. Aldridge, Stephen M. Leuck, Kevin L. Houser
  • Patent number: 11911064
    Abstract: A surgical instrument includes an end effector having a clamp arm pivotable relative to an ultrasonic blade, an articulation section configured to deflect the end effector, an acoustic waveguide having a distal portion extending along an axis, a clamp arm closure assembly comprising a body configured to actuate in order to drive the pivoting of the clamp arm, and a clamp arm clocking assembly. The clamp arm clocking assembly is capable of driving rotation of the clamp arm about the axis relative to the ultrasonic blade between a first clocked position and a second clocked position. The clamp arm clocking assembly includes a rotating body pivotally coupled with the clamp arm, a translating drive extending through the articulation section, and a rotation driver assembly. The rotation driver is in communication with the translating driver in order to convert translational motion of the translating driver into rotational motion of the rotating body.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: February 27, 2024
    Assignee: Cilag GmbH International
    Inventors: Jeffrey L. Clark, Morgan R. Hunter, Brian D. Black, Thomas B. Remm
  • Patent number: 11903605
    Abstract: An ultrasonic surgical instrument and method of assembly with a predetermined alignment includes first and second modular assemblies and an electrical lockout. The first modular assembly includes at least a portion of an end effector configured to manipulate a tissue. The second modular assembly includes a transducer power circuit and an activation switch electrically connected to the transducer power circuit. The electrical lockout is electrically connected to the transducer power circuit and configured to inhibit the activation switch from powering the ultrasonic transducer with the first and second modular assemblies misaligned from the predetermined alignment such that the first and second modular assemblies are in a locked-out state. The electrical lockout is further configured to allow the activation switch to power the ultrasonic transducer with the first and second modular assemblies in the predetermined alignment such that the first and second modular assemblies are in an operational state.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: February 20, 2024
    Assignee: Cilag GmbH International
    Inventors: Ryan M. Asher, Brian D. Black, John E. Brady, Alexander R. Cuti, Demetrius N. Harris, Carl J. Draginoff, Jr., Ellen Burkart, Geni M. Giannotti, Andrew Kolpitcke, Amy M. Krumm, Matthew T. Kuhn, Stephen M. Leuck, Cameron D. McLain, Ion V. Nicolaescu, Candice Otrembiak, Amrita S. Sawhney, Aaron C. Voegele, Grace E. Brooks, Fajian Zhang
  • Patent number: 11890030
    Abstract: An ultrasonic surgical instrument includes a shaft assembly, an end effector, and a clamp arm driver. The shaft assembly includes a shaft portion extending along a first longitudinal axis, an articulation assembly, a distal shaft portion, and an ultrasonic waveguide extending through the proximal shaft portion, the articulation assembly, and the distal shaft portion. The articulation section is configured to deflect the end effector toward and away from the first longitudinal axis between a straight and articulated configuration. The end effector includes an ultrasonic blade defining a second longitudinal axis and a clamp arm configured to move between an open and closed configuration in order to grasp tissue. The clamp arm drive is configured to rotate the clamp arm relative to the ultrasonic blade about the second longitudinal axis and actuate the clamp arm between the open and closed configuration while the end effector is in the articulated configuration.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: February 6, 2024
    Assignee: Auris Health, Inc.
    Inventors: Brian D. Black, Matthew T. Stone, Andrew T. Beckman, Charles J. Scheib, Jeffrey L. Clark
  • Patent number: 11864786
    Abstract: Systems, devices, and methods are operable to track usage of a surgical instrument and modify the performance of the surgical instrument based on the prior usage of the surgical instrument. Some surgical instruments are designed to have a limited service life beginning at their first use, or a limit to their overall usage in order to ensure safe use of the sensitive instruments. However, a lack of ability to track usage characteristics when the instrument is separated from an external power supply allows for user abuse and avoidance of such safety mechanisms. Adding a battery or capacitor to the instrument may allow for an ability to track usage when the instrument is separated from an external power supply. Implementing special user prompts, device use ratios, and device use half-life upon powering down of an instrument may additionally be used to prevent circumvention of safety features.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: January 9, 2024
    Assignee: Cilag GmbH International
    Inventors: Craig N. Faller, Benjamin D. Dickerson, Jeffrey L. Aldridge, Jeffrey A. Bullock, Richard W. Timm, Ryan M. Asher, Timothy S. Holland, Craig T. Davis, Christina M. Hough, Cory G. Kimball, Ashvani K. Madan, David C. Yates, Shan Wan, Jacob S. Gee, Joseph E. Hollo, Chad P. Boudreaux, John B. Schulte, Tylor C. Muhlenkamp, Brian D. Black
  • Publication number: 20230355265
    Abstract: A generator, ultrasonic device, and method for controlling a temperature of an ultrasonic blade are disclosed. A control circuit coupled to a memory determines an actual resonant frequency of an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade by an ultrasonic waveguide. The actual resonant frequency is correlated to an actual temperature of the ultrasonic blade. The control circuit retrieves from the memory a reference resonant frequency of the ultrasonic electromechanical system. The reference resonant frequency is correlated to a reference temperature of the ultrasonic blade. The control circuit then infers the temperature of the ultrasonic blade based on the difference between the actual resonant frequency and the reference resonant frequency.
    Type: Application
    Filed: April 6, 2023
    Publication date: November 9, 2023
    Inventors: Cameron R. Nott, Fergus P. Quigley, Amrita S. Sawhney, Stephen M. Leuck, Brian D. Black, Eric M. Roberson, Kristen G. Denzinger, Patrick J. Scoggins, Craig N. Faller, Madeleine C. Jayme, Jacob S. Gee
  • Patent number: 11806037
    Abstract: An ultrasonic surgical instrument includes an end effector having an ultrasonic blade, an ultrasonic transducer assembly, and a shaft assembly the shaft assembly includes a tube, an acoustic waveguide, and a sheath radially positioned between the acoustic waveguide and the tube. The acoustic waveguide is received within the tube and is acoustically connected between the ultrasonic blade and ultrasonic transducer assembly to communicate ultrasonic vibrations from the ultrasonic transducer assembly to the ultrasonic blade. The acoustic waveguide extends along a longitudinal axis. The sheath includes a sheath body having an outer body surface and a plurality of damping rings radially extending from the outer body surface and engaged with the tube. The plurality of damping rings are configured to acoustically isolate the acoustic waveguide from the tube.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: November 7, 2023
    Assignee: Cilag GmbH International
    Inventors: Brian D. Black, Matthew T. Stone, Andrew T. Beckman, Charles J. Scheib
  • Publication number: 20230310022
    Abstract: A surgical instrument includes an end effector, a shaft assembly proximally extending from the end effector, and at least one translatable rack gear assembly coupled with the shaft assembly. The shaft assembly includes at least one elongate member connected to a select one or both of the end effector and the shaft assembly. The at least one translatable rack gear assembly includes a rack gear, an anchor longitudinally adjustable relative to the rack gear, and an insert received within the anchor. The anchor is coupled with the at least one elongate member such that adjustment of the anchor relative to the rack gear longitudinally moves the insert and the at least one elongate member for adjusting tension of the at least one elongate member.
    Type: Application
    Filed: June 9, 2023
    Publication date: October 5, 2023
    Inventors: Morgan R. Hunter, Brian D. Black, Thomas B. Remm
  • Publication number: 20230263548
    Abstract: A method for controlling an operation of an ultrasonic blade of an ultrasonic electromechanical system is disclosed. The method includes providing an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade via an ultrasonic waveguide; applying, by an energy source, a power level to the ultrasonic transducer; determining, by a control circuit coupled to a memory, a mechanical property of the ultrasonic electromechanical system; comparing, by the control circuit, the mechanical property with a reference mechanical property stored in the memory; and adjusting, by the control circuit, the power level applied to the ultrasonic transducer based on the comparison of the mechanical property with the reference mechanical property.
    Type: Application
    Filed: February 24, 2023
    Publication date: August 24, 2023
    Inventors: Frederick E. Shelton, IV, David C. Yates, Jason L. Harris, Kevin L. Houser, John E. Brady, Gregory A. Trees, Patrick J. Scoggins, Madeleine C. Jayme, Kristen G. Denzinger, Cameron R. Nott, Craig N. Faller, Amrita S. Sawhney, Eric M. Roberson, Stephen M. Leuck, Brian D. Black, Jeffrey D. Messerly, Fergus P. Quigley, Tamara S. Widenhouse
  • Patent number: 11712261
    Abstract: A surgical instrument includes an end effector, a shaft assembly proximally extending from the end effector, and at least one translatable rack gear assembly coupled with the shaft assembly. The shaft assembly includes at least one elongate member connected to a select one or both of the end effector and the shaft assembly. The at least one translatable rack gear assembly includes a rack gear, an anchor longitudinally adjustable relative to the rack gear, and an insert received within the anchor. The anchor is coupled with the at least one elongate member such that adjustment of the anchor relative to the rack gear longitudinally moves the insert and the at least one elongate member for adjusting tension of the at least one elongate member.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: August 1, 2023
    Assignee: Cilag GmbH International
    Inventors: Morgan R. Hunter, Brian D. Black, Thomas B. Remm
  • Publication number: 20230233245
    Abstract: Various aspects of a generator, ultrasonic device, and method for estimating a state of an end effector of an ultrasonic device are disclsoed. The ultrasonic device includes an electromechanical ultrasonic system defined by a predetermined resonant frequency, including an ultrasonic transducer coupled to an ultrasonic blade. A control circuit measures a complex impedance of an ultrasonic transducer, wherein the complex impedance is defined as Z g ( t ) = V g t I g t . The control circuit receivs a complex impedance measurement data point and compares the complex impedance measurement data point to a data point in a reference complex impedance characteristic pattern. The control circuit then classifies the complex impedance measurement data point based on a result of the comparison analysis and assigns a state or condition of the end effector based on the result of the comparison analysis.
    Type: Application
    Filed: October 10, 2022
    Publication date: July 27, 2023
    Inventors: Cameron R. Nott, Foster B. Stulen, Fergus P. Quigley, John E. Brady, Gregory A. Trees, Amrita Singh Sawhney, Rafael J. Ruiz Ortiz, Patrick J. Scoggins, Kristen G. Denzinger, Craig N. Faller, Madeleine C. Jayme, Alexander R. Cuti, Matthew S. Schneider, Chad P. Boudreaux, Brian D. Black, Maxwell T. Rockman, Gregory D. Bishop, Frederick E. Shelton, IV, David C. Yates
  • Publication number: 20230225754
    Abstract: A surgical apparatus includes a body assembly, a shaft, an acoustic waveguide, an articulation section, an end effector, and a rigidizing member. The shaft extends distally from the body assembly and defines a longitudinal axis. The acoustic waveguide includes a flexible portion. The articulation section is coupled with the shaft. A portion of the articulation section encompasses the flexible portion of the waveguide. The articulation section includes a first member and a second member. The second member is longitudinally translatable relative to the first member. The end effector includes an ultrasonic blade in acoustic communication with the waveguide. The rigidizing member is configured to selectively engage at least a portion of the articulation section to thereby selectively provide rigidity to the articulation section.
    Type: Application
    Filed: February 17, 2023
    Publication date: July 20, 2023
    Inventors: William B. Weisenburgh, II, Barry C. Worrell, Jeffrey D. Messerly, Kristen L. D'Uva, Craig N. Faller, John B. Schulte, Kristen G. Denzinger, Joseph E. Hollo, Jason R. Sullivan, Brian D. Black, Frederick L. Estera, Stephen M. Leuck, Tylor C. Muhlenkamp, Gregory A. Trees, Gregory W. Johnson
  • Publication number: 20230225752
    Abstract: An ultrasonic surgical instrument and method of deflecting an end effector includes the end effector having an ultrasonic blade, a shaft assembly defining a longitudinal axis, and a body assembly. The shaft assembly has an articulation section configured to articulate from a straight configuration to an articulated configuration and an acoustic waveguide with a flexible waveguide portion positioned within the articulation section. The body assembly proximally extends from the shaft assembly and includes a housing and a shiftable transducer. The shiftable transducer is secured to the acoustic waveguide and configured to generate an ultrasonic energy. In addition, the shiftable transducer assembly is movably mounted relative to the housing and configured to accommodate deflection of the end effector.
    Type: Application
    Filed: February 3, 2023
    Publication date: July 20, 2023
    Inventors: Brian D. Black, Morgan R. Hunter, Karl W. Mueller
  • Patent number: 11701139
    Abstract: A generator, ultrasonic device, and method for controlling a temperature of an ultrasonic blade are disclosed. A control circuit coupled to a memory determines an actual resonant frequency of an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade by an ultrasonic waveguide. The actual resonant frequency is correlated to an actual temperature of the ultrasonic blade. The control circuit retrieves from the memory a reference resonant frequency of the ultrasonic electromechanical system. The reference resonant frequency is correlated to a reference temperature of the ultrasonic blade. The control circuit then infers the temperature of the ultrasonic blade based on the difference between the actual resonant frequency and the reference resonant frequency. The control circuit controls the temperature of the ultrasonic blade based on the inferred temperature.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: July 18, 2023
    Assignee: Cilag GmbH International
    Inventors: Cameron R. Nott, Fergus P. Quigley, Amrita S. Sawhney, Stephen M. Leuck, Brian D. Black, Eric M. Roberson, Kristen G. Denzinger, Patrick J. Scoggins, Craig N. Faller, Madeleine C. Jayme, Jacob S. Gee
  • Patent number: 11690642
    Abstract: An ultrasonic surgical instrument and method of deflecting an end effector include an acoustic waveguide with a proximal waveguide body portion defining a longitudinal axis, a distal waveguide body portion having an ultrasonic blade distally projecting therefrom, and an articulation body portion extending between the proximal and distal waveguide body portions. The articulation body portion of the acoustic waveguide is configured to flex a first direction to thereby deflect the ultrasonic blade relative to the longitudinal axis and through a first plane. In addition, the articulation body portion of the acoustic waveguide is further configured to flex a second direction to thereby deflect the ultrasonic blade relative to the longitudinal axis and through a second plane. The second direction is different than the first direction such that the second plane is different than the first plane for multiplanar deflection of the ultrasonic blade relative to the longitudinal axis.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: July 4, 2023
    Assignee: Cilag GmbH International
    Inventors: Brian D. Black, Morgan R. Hunter, Thomas B. Remm