Patents by Inventor Brian D. Black

Brian D. Black has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230112022
    Abstract: An apparatus comprises a body assembly, a shaft, an acoustic waveguide, an articulation section, an end effector, and an articulation drive assembly. The shaft extends distally from the body assembly and defines a longitudinal axis. The acoustic waveguide comprises a flexible portion. The articulation section is coupled with the shaft. A portion of the articulation section encompasses the flexible portion of the waveguide. The articulation section comprises a plurality of body portions aligned along the longitudinal axis and a flexible locking member. The flexible locking member is operable to secure the body portions in relation to each other and in relation to the shaft. The end effector comprises an ultrasonic blade in acoustic communication with the waveguide. The articulation drive assembly is operable to drive articulation of the articulation section to thereby deflect the end effector from the longitudinal axis.
    Type: Application
    Filed: October 12, 2022
    Publication date: April 13, 2023
    Inventors: Barry C. Worrell, Benjamin J. Danziger, Benjamin D. Dickerson, Brian D. Black, Cara L. Shapiro, Charles J. Scheib, Craig N. Faller, Daniel J. Mumaw, David J. Cagle, David T. Martin, David A. Monroe, Disha V. Estera, Foster B. Stulen, Frederick L. Estera, Geoffrey S. Strobl, Gregory W. Johnson, Jacob S. Gee, Jason R. Sullivan, Jeffrey D. Messerly, Jeffrey S. Swayze, John A. Hibner, John B. Schulte, Joseph E. Hollo, Kristen G. Denzinger, Kristen L. D'Uva, Matthew C. Miller, Michael R. Lamping, Richard W. Timm, Rudolph H. Nobis, Ryan M. Asher, Stephen M. Leuck, Tylor C. Muhlenkamp, William B. Weisenburgh, II, William A. Olson
  • Patent number: 11617597
    Abstract: A method of controlling the temperature of an ultrasonic blade includes applying a power level to an ultrasonic transducer to achieve a desired temperature at an ultrasonic blade coupled to the transducer via an ultrasonic waveguide, inferring a temperature of the blade based on a voltage Vg(t) signal and a current Ig(t) signal applied to the transducer, comparing the inferred temperature of the blade to a predetermined temperature; and adjusting the power level to the transducer based on the comparison. In some aspects, the method includes measuring a phase angle ? between the voltage Vg(t) and the current Ig(t) and inferring the temperature of the blade from the phase angle ?. In some aspects, the method includes measuring an impedance Zg(t) equal to a ratio of the voltage Vg(t) to the current Ig(t) and inferring the temperature of the blade from the impedance Zg(t).
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: April 4, 2023
    Assignee: Cilag GmbH International
    Inventors: Amrita S. Sawhney, Stephen M. Leuck, Brian D. Black, Eric M. Roberson
  • Patent number: 11612409
    Abstract: An ultrasonic surgical instrument and method of deflecting an end effector includes the end effector having an ultrasonic blade, a shaft assembly defining a longitudinal axis, and a body assembly. The shaft assembly has an articulation section configured to articulate from a straight configuration to an articulated configuration and an acoustic waveguide with a flexible waveguide portion positioned within the articulation section. The body assembly proximally extends from the shaft assembly and includes a housing and a shiftable transducer. The shiftable transducer is secured to the acoustic waveguide and configured to generate an ultrasonic energy. In addition, the shiftable transducer assembly is movably mounted relative to the housing and configured to accommodate deflection of the end effector.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: March 28, 2023
    Assignee: Cilag GmbH International
    Inventors: Brian D. Black, Morgan R. Hunter, Karl W. Mueller
  • Patent number: 11612408
    Abstract: Various systems and methods for determining the composition of tissue via an ultrasonic surgical instrument are disclosed. A control circuit can be configured to monitor the change in resonant frequency of an ultrasonic electromechanical system of the ultrasonic surgical instrument as the ultrasonic blade oscillates against a tissue and determine the composition of the tissue accordingly. In some aspects, the control circuit can be configured to modify the operation of the ultrasonic electromechanical system or other operational parameters of the ultrasonic surgical instrument according to the detected tissue composition.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: March 28, 2023
    Assignee: Cilag GmbH International
    Inventors: David C. Yates, Jason L. Harris, Frederick E. Shelton, IV, Kevin L. Houser, John E. Brady, Gregory A. Trees, Patrick J. Scoggins, Madeleine C. Jayme, Kristen G. Denzinger, Cameron R. Nott, Craig N. Faller, Amrita S. Sawhney, Eric M. Roberson, Stephen M. Leuck, Brian D. Black
  • Patent number: 11602364
    Abstract: A surgical instrument includes an ultrasonic waveguide extending through a body assembly. An ultrasonic blade connects to the ultrasonic waveguide. A clamp arm assembly of the surgical instrument is able to move from an opened position for receiving a tissue toward a closed position for clamping the tissue. The clamp arm assembly includes a clamp body and a clamp pad facing the ultrasonic blade. A clamp arm actuator of the surgical instrument is able to move from a first position toward a second position to direct the clamp arm assembly from the opened position toward the closed position. A modular coupling of the surgical instrument connects to the clamp pad such that at least the clamp pad can be disconnected relative to the ultrasonic blade for replacement thereof.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: March 14, 2023
    Assignee: Cilag GmbH International
    Inventors: Ryan M. Asher, Gregory D. Bishop, Brian D. Black, Chad P. Boudreaux, David J. Cagle, William E. Clem, Joseph Dennis, Kristen G. Denzinger, Benjamin D. Dickerson, Kevin M. Fiebig, Ellen Burkart, Christina M. Hough, John V. Hunt, Cody R. Jackson, Cory G. Kimball, Jeffrey D. Messerly, Gabriel I. Myers, Ion V. Nicolaescu, William A. Olson, Candice Otrembiak, John K. Swain, Gregory A. Trees, John A. Weed, III, William B. Weisenburgh, II, Eitan T. Wiener, Barry C. Worrell, David C. Yates, Monica L. Zeckel
  • Publication number: 20230071969
    Abstract: A surgical instrument includes an end effector, and a shaft assembly. The end effector includes an ultrasonic blade, a rotating body, and a clamp arm movable between an open and a closed position. The shaft assembly extends along an axis and includes clamp arm clocking assembly and a clamp arm pivot assembly. The clamp arm clocking assembly can drive the rotating body and the clamp arm between a first clocked position and a second clocked position. The clamp arm pivot assembly includes an actuator body defining a track, where the actuator body can actuate to drive the clamp arm between the open position and the closed position while the actuator body is in a rotational position relative to the ultrasonic blade. The track houses a portion of the clamp arm in the first clocked position and the second clocked position while the actuator body is in the rotational position.
    Type: Application
    Filed: September 13, 2022
    Publication date: March 9, 2023
    Inventors: Morgan R. Hunter, Brian D. Black
  • Patent number: 11589888
    Abstract: A method for controlling an operation of an ultrasonic blade of an ultrasonic electromechanical system is disclosed. The method includes providing an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade via an ultrasonic waveguide; applying, by an energy source, a power level to the ultrasonic transducer; determining, by a control circuit coupled to a memory, a mechanical property of the ultrasonic electromechanical system; comparing, by the control circuit, the mechanical property with a reference mechanical property stored in the memory; and adjusting, by the control circuit, the power level applied to the ultrasonic transducer based on the comparison of the mechanical property with the reference mechanical property.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: February 28, 2023
    Assignee: Cilag GmbH International
    Inventors: Frederick E. Shelton, IV, David C. Yates, Jason L. Harris, Kevin L. Houser, John E. Brady, Gregory A. Trees, Patrick J. Scoggins, Madeleine C. Jayme, Kristen G. Denzinger, Cameron R. Nott, Craig N. Faller, Amrita S. Sawhney, Eric M. Roberson, Stephen M. Leuck, Brian D. Black, Fergus P. Quigley, Tamara Widenhouse
  • Publication number: 20230049889
    Abstract: A surgical instrument includes an end effector, a shaft assembly, and an axial location feature. The end effector includes an ultrasonic blade and a clamp arm that can move between an open and closed position. The shaft assembly includes a proximal shaft portion, an acoustic waveguide extending proximally from the ultrasonic blade, a distal shaft portion extending along a distal axis, and an articulation section interposed between the proximal shaft portion and the distal shaft portion. The articulation section can deflect the distal shaft portion and the end effector relative to the longitudinal axis between a non-deflected position and a deflected position. The axial location feature can inhibit the ultrasonic blade from shifting relative to the clamp arm along the distal axis as the end effector is driven between the non-deflected position and the deflected position.
    Type: Application
    Filed: August 16, 2022
    Publication date: February 16, 2023
    Inventors: Morgan R. Hunter, Brian D. Black, Thomas B. Remm, Karl W. Mueller
  • Patent number: 11571236
    Abstract: An apparatus includes a body assembly, an acoustic waveguide, an ultrasonic blade, a liquid dispensing feature, and a control module. The liquid dispensing feature is positioned distally relative to the body assembly. The liquid dispensing feature is positioned adjacent to the ultrasonic blade. The liquid dispensing feature is configured to deliver a flow of cooling liquid to the ultrasonic blade. The control module is operable to regulate fluid flow through the liquid dispensing feature.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: February 7, 2023
    Assignee: Cilag GmbH International
    Inventors: David C. Yates, Benjamin M. Boyd, Benjamin D. Dickerson, Brian D. Black, Craig N. Faller, Kristen G. Denzinger, Paul F. Riestenberg, David M. Locke, Jacob S. Gee, Joseph Dennis, Ashvani K. Madan
  • Patent number: 11571234
    Abstract: A generator, ultrasonic device, and method of determining a temperature of an ultrasonic blade are disclosed. A control circuit coupled to a memory determines an actual resonant frequency of an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade by an ultrasonic waveguide. The actual resonant frequency is correlated to an actual temperature of the ultrasonic blade. The control circuit retrieves from the memory a reference resonant frequency of the ultrasonic electromechanical system. The reference resonant frequency is correlated to a reference temperature of the ultrasonic blade. The control circuit then infers the temperature of the ultrasonic blade based on the difference between the actual resonant frequency and the reference resonant frequency.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: February 7, 2023
    Assignee: Cilag GmbH International
    Inventors: Cameron R. Nott, Fergus P. Quigley, Amrita Singh Sawhney, Stephen M. Leuck, Brian D. Black, Eric M. Roberson, Patrick J. Scoggins, Craig N. Faller, Madeleine C. Jayme, Jacob S. Gee, Frederick E. Shelton, IV, David C. Yates
  • Publication number: 20230000518
    Abstract: Various aspects of a generator, ultrasonic device, and method for estimating and controlling a state of an end effector of an ultrasonic device are disclosed. The ultrasonic device includes an electromechanical ultrasonic system defined by a predetermined resonant frequency, including an ultrasonic transducer coupled to an ultrasonic blade. A control circuit measures a complex impedance of an ultrasonic transducer, wherein the complex impedance as defined as Z g ( t ) = V g ( t ) I g ( t ) ; The control circuit receives a complex impedance measurement data point and compares the complex impedance measurement data point to a data point in a reference complex impedance characteristic pattern. The control circuit then classifies the complex impedance measurement data point based on a result of the comparison analysis and assigns a state or condition of the end effector based on the result of the comparison analysis.
    Type: Application
    Filed: June 7, 2022
    Publication date: January 5, 2023
    Inventors: Cameron R. Nott, Foster B. Stulen, Fergus P. Quigley, John E. Brady, Gregory A. Trees, Amrita S. Sawhney, Patrick J. Scoggins, Kristen G. Denzinger, Craig N. Faller, Madeleine C. Jayme, Alexander R. Cuti, Matthew S. Schneider, Chad P. Boudreaux, Brian D. Black, Maxwell T. Rockman, Gregory D. Bishop, Eric M. Roberson, Stephen M. Leuck, James M. Wilson
  • Patent number: 11534196
    Abstract: An ultrasonic device may include an electromechanical ultrasonic system defined by a predetermined resonant frequency, the electromechanical ultrasonic system further including an ultrasonic transducer coupled to an ultrasonic blade. A method of delivering energy to the ultrasonic device may include measuring a complex impedance of the ultrasonic blade coupled to the ultrasonic transducer, comparing the measured complex impedance to stored values of complex impedance patterns associated with ultrasonic blade functions, and applying, an algorithm to control a power output to the ultrasonic transducer based on the comparison. The method may further include delivering energy to the ultrasonic device based on a state or condition of an end effector, in which the state or condition of the end effector corresponds to a state of only sealing a tissue or of spot coagulating the tissue.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: December 27, 2022
    Assignee: Cilag GmbH International
    Inventor: Brian D. Black
  • Publication number: 20220395292
    Abstract: An ultrasonic instrument includes a housing, an ultrasonic transducer support by the housing, and an integrated usage indicator. The housing is configured to removably connect to a shaft assembly. The ultrasonic transducer is configured to be acoustically connected to a waveguide and operated a predetermined number of use cycles. The integrated usage indicator is operatively connected to the housing and includes a used state indicator. The used state indicator is configured to indicate to a clinician in a used state when the ultrasonic transducer has been operated at least the predetermined number of use cycles for limiting usage of the ultrasonic transducer to the predetermined number of use cycles.
    Type: Application
    Filed: July 8, 2022
    Publication date: December 15, 2022
    Inventors: Ryan M. Asher, Brian D. Black, Chad P. Boudreaux, Nathan Cummings, William D. Dannaher, Craig T. Davis, Glenn W. Ellison, Frederick L. Estera, Jacob S. Gee, Geni M. Giannotti, Timothy S. Holland, Kevin L. Houser, Gregory W. Johnson, Amy M. Krumm, Jason R. Lesko, Stephen M. Leuck, Ion V. Nicolaescu, Candice Otrembiak, Amelia A. Pierce, Eric Roberson, Shan Wan
  • Publication number: 20220346897
    Abstract: A surgical instrument includes a drive housing, a spline, a carriage, an elongate shaft assembly, an end effector, and an activating mechanism. The at least one spline includes a drive gear rotatable with the spline. The elongate shaft assembly extends from the carriage. The activating mechanism includes a barrel cam extending along a rotational axis and having a first cam profile radially extending about the rotational axis. The barrel cam is operatively coupled to the drive gear such that rotation of the drive gear is configured to actuate the activating mechanism to move at least a portion of the end effector. The first cam profile defines a plurality of slopes relative to the rotational axis such that the first cam profile is configured to drive movement of the end effector or the elongate shaft assembly at different rates according to the plurality of slopes.
    Type: Application
    Filed: April 30, 2021
    Publication date: November 3, 2022
    Inventors: Brian D. Black, Charles J. Scheib, Matthew T. Stone, Mark D. Overmyer, Christopher A. Denzinger, Andrew T. Beckman, Neil T. Markwardt
  • Publication number: 20220346824
    Abstract: A method of fabricating an ultrasonic medical device is presented. The method includes machining a surgical tool from a flat metal stock, contacting a face of a first transducer with a first face of the surgical tool, and contacting a face of a second transducer with an opposing face of the surgical tool opposite the first transducer. The first and second transducers are configured to operate in a D31 mode with respect to the longitudinal portion of the surgical tool. Upon activation, the first transducer and the second transducer are configured to induce a standing wave in the surgical tool and the induced standing wave comprises a node at a node location in the surgical tool and an antinode at an antinode location in the surgical tool.
    Type: Application
    Filed: March 1, 2022
    Publication date: November 3, 2022
    Inventors: Jeffrey D. Messerly, Brian D. Black, William A. Olson, Frederick L. Estera, William E. Clem, Jerome R. Morgan, Jeffrey L. Aldridge, Stephen M. Leuck
  • Publication number: 20220346890
    Abstract: A surgical instrument includes an end effector, a shaft assembly, a drive, and an activating mechanism. The end effector includes first and second jaws. At least one of the first and second jaws is pivotable relative to the other of the first and second jaws between open and closed positions. The shaft assembly extends proximally from the end effector. The drive is operatively connected to a portion of at least one of the end effector or the shaft assembly. The activating mechanism includes an actuation body operatively connected to the drive. The portion is configured to perform a first actuation profile in response to the actuation body moving along a first predetermined path or perform a second actuation profile in response to the actuation body moving along a second predetermined path. Selection of the first predetermined path is configured to prevent the actuation body from accessing the second predetermined path.
    Type: Application
    Filed: April 30, 2021
    Publication date: November 3, 2022
    Inventors: Christopher A. Denzinger, Mark D. Overmyer, Charles J. Scheib, Neil T. Markwardt, Brian D. Black
  • Patent number: 11484333
    Abstract: An apparatus comprises a body assembly, a shaft, an acoustic waveguide, an articulation section, an end effector, and an articulation drive assembly. The shaft extends distally from the body assembly and defines a longitudinal axis. The acoustic waveguide comprises a flexible portion. The articulation section is coupled with the shaft. A portion of the articulation section encompasses the flexible portion of the waveguide. The articulation section comprises a plurality of body portions aligned along the longitudinal axis and a flexible locking member. The flexible locking member is operable to secure the body portions in relation to each other and in relation to the shaft. The end effector comprises an ultrasonic blade in acoustic communication with the waveguide. The articulation drive assembly is operable to drive articulation of the articulation section to thereby deflect the end effector from the longitudinal axis.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: November 1, 2022
    Assignee: Cilag GmbH International
    Inventors: Barry C. Worrell, Benjamin J. Danziger, Benjamin D. Dickerson, Brian D. Black, Cara L. Shapiro, Charles J. Scheib, Craig N. Faller, Daniel J. Mumaw, David J. Cagle, David T. Martin, David A. Monroe, Disha V. Labhasetwar, Foster B. Stulen, Frederick L. Estera, Geoffrey S. Strobl, Gregory W. Johnson, Jacob S. Gee, Jason R. Sullivan, Jeffrey D. Messerly, Jeffrey S. Swayze, John A. Hibner, John B. Schulte, Joseph E. Hollo, Kristen G. Denzinger, Kristen L. D'Uva, Matthew C. Miller, Michael R. Lamping, Richard W. Timm, Rudolph H. Nobis, Ryan M. Asher, Stephen M. Leuck, Tylor C. Muhlenkamp, William B. Weisenburgh, II, William A. Olson
  • Patent number: 11471181
    Abstract: A surgical instrument includes an end effector, and a shaft assembly. The end effector includes an ultrasonic blade, a rotating body, and a clamp arm movable between an open and a closed position. The shaft assembly extends along an axis and includes clamp arm clocking assembly and a clamp arm pivot assembly. The clamp arm clocking assembly can drive the rotating body and the clamp arm between a first clocked position and a second clocked position. The clamp arm pivot assembly includes an actuator body defining a track, where the actuator body can actuate to drive the clamp arm between the open position and the closed position while the actuator body is in a rotational position relative to the ultrasonic blade. The track houses a portion of the clamp arm in the first clocked position and the second clocked position while the actuator body is in the rotational position.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: October 18, 2022
    Assignee: Cilag GmbH International
    Inventors: Morgan R. Hunter, Brian D. Black
  • Publication number: 20220323095
    Abstract: A generator, ultrasonic device, and method for controlling a temperature of an ultrasonic blade are disclosed. A control circuit coupled to a memory determines an actual resonant frequency of an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade by an ultrasonic waveguide. The actual resonant frequency is correlated to an actual temperature of the ultrasonic blade. The control circuit retrieves from the memory a reference resonant frequency of the ultrasonic electromechanical system. The reference resonant frequency is correlated to a reference temperature of the ultrasonic blade. The control circuit then infers the temperature of the ultrasonic blade based on the difference between the actual resonant frequency and the reference resonant frequency.
    Type: Application
    Filed: February 9, 2022
    Publication date: October 13, 2022
    Inventors: Cameron R. Nott, Fergus P. Quigley, Amrita S. Sawhney, Stephen M. Leuck, Brian D. Black, Eric M. Roberson, Kristen G. Denzinger, Patrick J. Scoggins, Craig N. Faller, Madeleine C. Jayme, Jacob S. Gee
  • Patent number: 11464535
    Abstract: A surgical instrument is disclosed. The surgical instrument comprises an end effector comprising an ultrasonic blade and a clamp arm. The clamp arm is movable relative to the ultrasonic blade to transition the end effector between an open configuration and a closed configuration to clamp tissue between the ultrasonic blade and the clamp arm. The surgical instrument further comprises an ultrasonic transducer configured to generate an ultrasonic energy output and a waveguide configured to transmit the ultrasonic energy output to the ultrasonic blade. The surgical instrument further comprises a control circuit, configured to detect an immersion of the end effector in a liquid and compensate for heat flux lost due to the immersion of the end effector in the liquid.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: October 11, 2022
    Assignee: Cilag GmbH International
    Inventors: Frederick E. Shelton, IV, Jeffrey D. Messerly, Jason L. Harris, David C. Yates, Amrita S. Sawhney, Stephen M. Leuck, Brian D. Black, Eric M. Roberson