Patents by Inventor Brian D. Goers

Brian D. Goers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11795287
    Abstract: Various embodiments disclosed relate to pore inducers and porous abrasive forms made using the same. In various embodiments, the present invention provides a method of forming a porous abrasive form including heating an abrasive composition including pore inducers to form the porous abrasive form. During the heating the pore inducers in the porous abrasive form reduce in volume to form induced pores in the porous abrasive form.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: October 24, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Brian D. Goers, Mark A. Lukowski, Walter Flaschberger, Ernest L. Thurber, John E. Gozum
  • Publication number: 20230219195
    Abstract: Methods of making polymer bond abrasive articles and their precursors using powder bed jetting are disclosed. Polymer bond abrasive articles prepared by the method include abrasive articles having arcuate or tortuous cooling channels, unitary structured abrasive discs, abrasive segments, shaped abrasive particles, and abrasive wheels.
    Type: Application
    Filed: March 8, 2023
    Publication date: July 13, 2023
    Inventors: Robert L.W. Smithson, Brian D. Goers, Brian A. Shukla, Michael C. Harper
  • Patent number: 11623324
    Abstract: Methods of making polymer bond abrasive articles and their precursors using powder bed jetting are disclosed. Polymer bond abrasive articles prepared by the method include abrasive articles having arcuate or tortuous cooling channels, unitary structured abrasive discs, abrasive segments, shaped abrasive particles, and abrasive wheels.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: April 11, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Robert L. W. Smithson, Brian D. Goers, Brian A. Shukla, Michael C. Harper
  • Patent number: 11607841
    Abstract: A method of forming a vitreous bond abrasive article is presented that includes receiving, by a manufacturing device having one or more processors, a digital object comprising data specifying a plurality of layers of a vitreous bond abrasive article precursor. The vitreous bond abrasive article precursor includes abrasive particles bonded together by a vitreous bond precursor material and an organic compound. The vitreous bond abrasive article precursor further comprises at least one of: at least one tortuous cooling channel extending at least partially through the vitreous bond abrasive article precursor or at least one arcuate cooling channel extending at least partially through the vitreous bond abrasive article precursor. The method also includes generating, with the manufacturing device by an additive manufacturing process, the vitreous bond abrasive article precursor based on the digital object.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: March 21, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Carsten Franke, Maiken Givot, Malte Korten, Robert L. W. Smithson, Brian D. Goers, Negus B. Adefris, Thomas J. Anderson, Brian A. Shukla, Michael C. Harper, Elizaveta Y. Plotnikov
  • Patent number: 11607776
    Abstract: An abrasive agglomerate particle includes fused aluminum oxide mineral bonded in a vitreous matrix. The fused aluminum oxide mineral is present in a range from 70 percent by weight to 95 percent by weight and the vitreous matrix is present at least at five percent by weight, based on the weight of the abrasive agglomerate particle. The fused aluminum oxide mineral has an average particle size of up to 300 micrometers, and the abrasive agglomerate particle has a frusto-pyramidal shape with side walls having a taper angle in a range from 2 to 15 degrees and a dimension of at least 400 micrometers. The abrasive agglomerate particles are useful in abrasive articles. The method includes contacting the workpiece with an abrasive article and moving the workpiece and the abrasive article relative to each other to abrade the workpiece.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: March 21, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Mark A. Lukowski, Brian D. Goers, Negus B. Adefris, Scott W. Peterson
  • Publication number: 20230083287
    Abstract: A method for manufacturing a bonded abrasive article is presented. The method includes preparing a bondable abrasive composition including abrasive particles, a binder medium and an environmentally benign pore inducing material. The environmentally benign pore inducing material is nonflammable. The method also includes forming a precursor abrasive structure from the bondable abrasive composition. The method also includes removing the pore inducing material from the precursor abrasive structure to provide a porous precursor abrasive structure. The method also includes processing the porous precursor abrasive structure to provide a bonded abrasive article.
    Type: Application
    Filed: January 26, 2021
    Publication date: March 16, 2023
    Inventors: Mayank Puri, Ethan J. Berg, Walter Flaschberger, Katja A. Bartsch, Andrea V. Kirschner, Brian D. Goers, Maiken Givot
  • Patent number: 11597058
    Abstract: Methods of making metal bond abrasive articles via powder bed jetting are disclosed. Metal bond abrasive articles prepared by the method include abrasive articles having arcuate or tortuous cooling channels, abrasive segments, abrasive wheels, and rotary dental tools.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: March 7, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Carsten Franke, Brian D. Goers, Robert L. W. Smithson, Negus B. Adefris, Brian A. Shukla, Michael C. Harper, Elizaveta Y. Plotnikov
  • Patent number: 11577458
    Abstract: An additive layer manufacturing method, preferably using selective laser sintering, for manufacturing a solid article, the method including applying a layer of a powder, the powder including at least one powdered (co)polymer, onto a solid substrate in a processing chamber; fusing the powder layer onto the solid substrate; subsequently depositing successive layers of the powder, wherein each successive layer is selectively fused prior to deposition of the subsequent layer of powder so as to form the article. In some embodiments, the powder further includes abrasive particles having a hardness greater than or equal to that of aluminum oxide.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: February 14, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Jean-Luc Rifaut, Jens Eichler, Tilo Remhof, Brian D. Goers, Brian A. Shukla, Alexander J. Kugel, Maiken Givot, Michael C. Harper
  • Patent number: 11478899
    Abstract: A shaped abrasive agglomerate particle includes a shaped abrasive particle bonded in a vitreous matrix. The shaped abrasive particles have a longest particle lineal dimension on a surface and a shortest particle dimension perpendicular to the longest particle lineal dimension, and the longest particle lineal dimension is at least twice the shortest particle dimension. The shaped abrasive agglomerate particle has a longest agglomerate lineal dimension on a surface and a shortest agglomerate dimension perpendicular to the longest agglomerate lineal dimension, and the longest agglomerate lineal dimension is at least twice the shortest agglomerate dimension. The abrasive agglomerate particles are useful in abrasive articles. Methods of making the shaped abrasive agglomerate particle and abrading a workpiece are also described.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: October 25, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Mark A. Lukowski, Negus B. Adefris, Scott W. Peterson, Brian D. Goers, Rebecca A. Putans, Bridgette R. Shannon, Thomas J. Nelson, Jacob S. Beveridge
  • Patent number: 11383350
    Abstract: Metal bond abrasive articles and methods of making metal bond abrasive articles via a focused beam are disclosed. In an aspect, a metal bond abrasive article includes a metallic binder material having abrasive particles retained therein, where the abrasive particles have at least one coating disposed thereon. The coating includes a metal, a metal oxide, a metal carbide, a metal nitride, a metalloid, or combinations thereof, and the at least one coating has an average thickness of 0.5 micrometers or greater. The metal bond abrasive article includes a number of layers directly bonded to each other. Metal bond abrasive articles prepared by the method can include abrasive articles having arcuate or tortuous cooling channels, abrasive segments, abrasive wheels, and rotary dental tools.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: July 12, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Jean-Luc Rifaut, Badri Veeraraghavan, Tilo Remhof, Brian D. Goers, Andreas M. Geldmacher, Robert L. W. Smithson, Przemyslaw P. Markowicz, Johannes Fink
  • Publication number: 20210362297
    Abstract: The present disclosure provides methods of making a vitreous bond abrasive article and a metal bond abrasive article. The methods include sequential steps. Step a) includes a subprocess including sequentially: i) depositing a layer of loose powder particles in a confined region; and ii) selectively applying heat via conduction or irradiation, to heat treat an area of the layer of loose powder particles. The loose powder particles include abrasive particles and organic compound particles, as well as vitreous bond precursor particles or metal particles. The layer of loose powder particles has substantially uniform thickness. Step b) includes independently carrying out step a) a number of times to generate an abrasive article preform comprising the bonded powder particles and remaining loose powder particles. Step c) includes separating remaining loose powder particles from the abrasive article preform.
    Type: Application
    Filed: June 23, 2021
    Publication date: November 25, 2021
    Inventors: Carsten Franke, Maiken Givot, Malte Korten, Robert L.W. Smithson, Brian D. Goers, Negus B. Adefris, Thomas J. Anderson, Brian A. Shukla, Michael C. Harper, Elizaveta Y. Plotnikov
  • Publication number: 20210332277
    Abstract: According to one embodiment, a method can comprise: providing a tool that has a first portion that comprises a first material and a second portion that comprises a second material, wherein the second material differs from the first material and the tool is subject to a magnetic field, and wherein the first material and the second material are provided such that the magnetic field is relatively stronger at and adjacent the first portion relative to the magnetic field at and adjacent the second portion; positioning a surface adjacent to the tool so as to be subject to the magnetic field; and disposing magnetizable abrasive particles on the surface, wherein the magnetizable abrasive particles are attracted to an area on the surface adjacent the first portion where the magnetic field is relatively stronger so as to provide for at least one of a desired orientation, placement and alignment of a majority of the magnetizable abrasive particles on the surface.
    Type: Application
    Filed: January 10, 2018
    Publication date: October 28, 2021
    Inventors: Aaron K. Nienaber, Joseph B. Eckel, Thomas J. Nelson, Brian D. Goers, Samad Javid, Ronald D. Jesme, Badri Veeraraghavan, Sheryl A. Vanasse
  • Publication number: 20210316503
    Abstract: The present disclosure provides methods of making a vitreous bond abrasive article and a metal bond abrasive article. The methods include sequential steps. Step a) includes a subprocess including sequentially: i) depositing a layer of loose powder particles in a confined region; and ii) selectively applying heat via conduction or irradiation, to heat treat an area of the layer of loose powder particles. The loose powder particles include abrasive particles and organic compound particles, as well as vitreous bond precursor particles or metal particles. The layer of loose powder particles has substantially uniform thickness. Step b) includes independently carrying out step a) a number of times to generate an abrasive article preform comprising the bonded powder particles and remaining loose powder particles. Step c) includes separating remaining loose powder particles from the abrasive article preform.
    Type: Application
    Filed: June 23, 2021
    Publication date: October 14, 2021
    Inventors: Carsten Franke, Maiken Givot, Malte Korten, Robert L.W. Smithson, Brian D. Goers, Negus B. Adefris, Thomas J. Anderson, Brian A. Shukla, Michael C. Harper, Elizaveta Y. Plotnikov
  • Publication number: 20210317282
    Abstract: Various embodiments disclosed relate to pore inducers and porous abrasive forms made using the same. In various embodiments, the present invention provides a method of forming a porous abrasive form including heating an abrasive composition including pore inducers to form the porous abrasive form. During the heating the pore inducers in the porous abrasive form reduce in volume to form induced pores in the porous abrasive form.
    Type: Application
    Filed: June 24, 2021
    Publication date: October 14, 2021
    Inventors: Brian D. Goers, Mark A. Lukowski, Walter Flaschberger, Ernest L. Thurber, John E. Gozum
  • Publication number: 20210245433
    Abstract: An additive layer manufacturing method, preferably using selective laser sintering, for manufacturing a solid article, the method including applying a layer of a powder, the powder including at least one powdered (co)polymer, onto a solid substrate in a processing chamber; fusing the powder layer onto the solid substrate; subsequently depositing successive layers of the powder, wherein each successive layer is selectively fused prior to deposition of the subsequent layer of powder so as to form the article. In some embodiments, the powder further includes abrasive particles having a hardness greater than or equal to that of aluminum oxide.
    Type: Application
    Filed: June 27, 2019
    Publication date: August 12, 2021
    Inventors: Jean-Luc Rifaut, Jens Eichler, Tilo Remhof, Brian D. Goers, Brian A. Shukla, Alexander J. Kugel, Maiken Givot, Michael C. Harper
  • Patent number: 11078345
    Abstract: Various embodiments disclosed relate to pore inducers and porous abrasive forms made using the same. In various embodiments, the present invention provides a method of forming a porous abrasive form including heating an abrasive composition including pore inducers to form the porous abrasive form. During the heating the pore inducers in the porous abrasive form reduce in volume to form induced pores in the porous abrasive form.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: August 3, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Brian D. Goers, Mark A. Lukowski, Walter Flaschberger, Ernest L. Thurber, John E. Gozum
  • Patent number: 11072115
    Abstract: The present disclosure provides methods of making a vitreous bond abrasive article and a metal bond abrasive article. An abrasive article preform is produced by an additive manufacturing sub-process comprising the deposition of a layer of loose powder particles in a confined region and selective heating via conduction or irradiation to heat treat an area of the layer of loose powder particles. The loose powder particles include abrasive particles and organic compound particles, as well as vitreous bond precursor particles or metal particles. The abrasive article preform produced by additive manufacturing is subsequently heated to provide the vitreous bond abrasive article comprising the abrasive particles retained in a vitreous bond material, or to provide the metal bond abrasive article. Also, the methods include receiving, by an additive manufacturing device having a processor, a digital object specifying data for an abrasive article, and generating the abrasive article with the manufacturing device.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: July 27, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Carsten Franke, Maiken Givot, Malte Korten, Robert L. W. Smithson, Brian D. Goers, Negus B. Adefris, Thomas J. Anderson, Brian A. Shukla, Michael C. Harper, Elizaveta Y. Plotnikov
  • Patent number: 11072053
    Abstract: The present disclosure provides methods of making a vitreous bond abrasive article and a metal bond abrasive article. The methods include sequential steps. Step a) includes a subprocess including sequentially: i) depositing a layer of loose powder particles in a confined region; and ii) selectively applying heat via conduction or irradiation, to heat treat an area of the layer of loose powder particles. The loose powder particles include abrasive particles and organic compound particles, as well as vitreous bond precursor particles or metal particles. The layer of loose powder particles has substantially uniform thickness. Step b) includes independently carrying out step a) a number of times to generate an abrasive article preform comprising the bonded powder particles and remaining loose powder particles. Step c) includes separating remaining loose powder particles from the abrasive article preform.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: July 27, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Carsten Franke, Maiken Givot, Malte Korten, Robert L. W. Smithson, Brian D. Goers, Negus B. Adefris, Thomas J. Anderson, Brian A. Shukla, Michael C. Harper, Elizaveta Y. Plotnikov
  • Publication number: 20210094149
    Abstract: Methods of making metal bond abrasive articles via powder bed jetting are disclosed. Metal bond abrasive articles prepared by the method include abrasive articles having arcuate or tortuous cooling channels, abrasive segments, abrasive wheels, and rotary dental tools.
    Type: Application
    Filed: December 11, 2020
    Publication date: April 1, 2021
    Inventors: Carsten Franke, Brian D. Goers, Robert L.W. Smithson, Negus B. Adefris, Brian A. Shukla, Michael C. Harper, Elizaveta Y. Plotnikov
  • Patent number: 10888973
    Abstract: Methods of making metal bond abrasive articles via powder bed jetting are disclosed. Metal bond abrasive articles prepared by the method include abrasive articles having arcuate or tortuous cooling channels, abrasive segments, abrasive wheels, and rotary dental tools.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: January 12, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Carsten Franke, Brian D. Goers, Robert L. W. Smithson, Negus B. Adefris, Brian A. Shukla, Michael C. Harper, Elizaveta Y. Plotnikov