Patents by Inventor Brian E. Brooks

Brian E. Brooks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220178899
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for optimizing a process of manufacturing a biologic pharmaceutical. In one aspect, the method comprises repeatedly performing the following: i) selecting a configuration of input settings for manufacturing a batch of a biologic pharmaceutical based on a causal model that measures current causal relationships between input settings and a measure of a quality of batches of the biological pharmaceutical; ii) determining a measure of the quality of a batch of the biological pharmaceutical manufactured using the configuration of input settings; and iii) adjusting, based on the measure of the quality of the batch of the biological pharmaceutical, the causal model.
    Type: Application
    Filed: October 3, 2019
    Publication date: June 9, 2022
    Inventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson, Susan L. Woulfe, Mark A. Tomai
  • Publication number: 20220180979
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for designing a clinical trial. In one aspect, the method comprises repeatedly performing the following: i) selecting, from a population of patients, patients for being treated with the treatment using a configuration of input settings, wherein the configuration is selected based on a causal model that measures current causal relationships between input settings and a measure of success of the clinical trial; ii) determining the measure of success of the clinical trial for which patients were selected using the certain configuration of input settings; and iii) adjusting, based on the measure of success of the clinical trial, the causal model.
    Type: Application
    Filed: October 28, 2019
    Publication date: June 9, 2022
    Inventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson, Susan L. Woulfe, Mark A. Tomai
  • Publication number: 20220176968
    Abstract: A method of optimizing a plurality of control signals used in operating a vehicle is described. The operation has a plurality of associated measurable parameters. The method includes: for each control signal, selecting a plurality of potential optimum values from a predetermined set; operating the vehicle in at least a first sequence of operation iterations, where for each pair of sequential first and second operation iterations in the first sequence of operation iterations, the potential optimum value of one control signal in the first operation iteration is replaced in the second operation iteration with a next potential optimum value of the control signal, while the potential optimum values of the remaining control signals are maintained; for each operation iteration, measuring each parameter in the plurality of measurable parameters; and generating confidence intervals for the control signals to determine causal relationships between the control signals and the measurable parameters.
    Type: Application
    Filed: September 11, 2019
    Publication date: June 9, 2022
    Inventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson, John A. Wheatley
  • Patent number: 11354704
    Abstract: At least some aspects of the present disclosure feature systems and methods for delivering content to a mobile device. In one embodiment, the system receives location information of the mobile device and determines a response duration. The system selects a content piece to deliver to the mobile device based on information regarding content comparisons or experimental units.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: June 7, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Brian E. Brooks, Frederick J. Arsenault
  • Publication number: 20220172830
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for controlling operations of one or more healthcare facilities. In one aspect, the method comprises repeatedly performing the following: i) selecting a configuration of input settings for controlling operations of the healthcare facilities based on a causal model that measures current causal relationships between input settings and a measure of success of operations at the healthcare facilities; ii) receiving a measure of success of the operation of the healthcare facilities while controlled using the configuration of input settings; and iii) adjusting, based on the measure of success of the operation of the healthcare facilities while controlled using the configuration of input settings, the causal model.
    Type: Application
    Filed: October 3, 2019
    Publication date: June 2, 2022
    Inventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson, Susan L. Woulfe, Mark A. Tomai
  • Publication number: 20220172139
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for optimizing operations of a supply chain. In one aspect, the method comprises repeatedly performing the following: i) selecting a configuration of input settings for operating a supply chain, based on a causal model that measures causal relationships between input settings and a measure of success of the supply chain; ii) determining the measure of success of the supply chain operated using the configuration of input settings; and iii) adjusting, based on the measure of success of the supply chain operated using the configuration of input settings, the causal model.
    Type: Application
    Filed: September 11, 2019
    Publication date: June 2, 2022
    Inventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson
  • Publication number: 20220163951
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for optimizing a process of manufacturing a product. In one aspect, the method comprises repeatedly performing the following: i) selecting a configuration of input settings for manufacturing a product, based on a causal model that measures causal relationships between input settings and a measure of a quality of the product; ii) determining the measure of the quality of the product manufactured using the configuration of input settings; and iii) adjusting, based on the measure of the quality of the product manufactured using the configuration of input settings, the causal model.
    Type: Application
    Filed: October 3, 2019
    Publication date: May 26, 2022
    Inventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson, Brett R. Hemes, Thomas J. Strey, Jonathan B. Arthur, Nathan J. Herbst, Aaron K. Nienaber, Sarah M. Mullins, Mark W. Orlando, Cory D. Sauer, Timothy J. Clemens, Scott L. Barnett, Zachary M. Schaeffer, Patrick G. Zimmerman, Gregory P. Moriarty, Jeffrey P. Adolf, Steven P. Floeder, Andreas Backes, Peter J. Schneider, Maureen A. Kavanagh, Glenn E. Casner, Miaoding Dai, Christopher M. Brown, Lori A. Sjolund, Jon A. Kirschhoffer, Carter C. Hughes
  • Publication number: 20220155733
    Abstract: A method of performing a process using a plurality of control signals and resulting in a plurality of measurable outcomes is described. The method includes optimizing the plurality of control signals by at least: receiving a plurality of process constraints; receiving, for each measurable outcome, an optimum range; receiving, for each control signal, a plurality of potential optimum values; iteratively performing the process, where for each process iteration, the value of each control signal is selected from among the plurality of potential optimum values received for the control signal; for each process iteration, measuring each outcome in the plurality of measurable outcomes; and generating confidence intervals for the control signals to determine a causal relationship between the control signals and the measurable outcomes. The method includes performing the process using at least the control signals determined by the causal relationship to causally affect at least one of the measurable outcomes.
    Type: Application
    Filed: September 11, 2019
    Publication date: May 19, 2022
    Inventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson
  • Publication number: 20220146995
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining causal models for controlling environments.
    Type: Application
    Filed: September 11, 2019
    Publication date: May 12, 2022
    Inventors: Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson, Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson
  • Publication number: 20220146988
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining causal models for controlling environments. One of the methods includes identifying a procedural instance; determining a temporal extent for the procedural instance based on temporal extent parameters for the one or more entities in the procedural instance; selecting control settings for the procedural instance; monitoring environment responses to the control settings that are received for the one or more entities; determining which of the environment responses to attribute to the procedural instance in a causal model; and adjusting, based at least in part on the environment responses that are attributed to the procedural instance, the temporal extent parameters for the one or more entities.
    Type: Application
    Filed: September 11, 2019
    Publication date: May 12, 2022
    Inventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson
  • Publication number: 20220146991
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for optimizing a process of polishing semiconductor wafers. In one aspect, the method comprises repeatedly performing the following: i) selecting a configuration of input settings for polishing a semiconductor wafer, based on a causal model that measures current causal relationships between input settings and a quality of semiconductor wafers; ii) receiving a measure of the quality of the semiconductor wafer polished with the configuration of input settings; and iii) adjusting, based on the measure of the quality of the semiconductor wafer polished with the configuration of input settings, the causal model.
    Type: Application
    Filed: October 3, 2019
    Publication date: May 12, 2022
    Inventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson, Vincent J. Laraia, Don V. West
  • Publication number: 20220137565
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for optimizing parameters of one or more proportional-integral-derivative (PID) controllers. In one aspect, the method comprises repeatedly performing the following: i) selecting a configuration of respective PID parameters for each of the plurality of PID controllers, based on a causal model that measures causal relationships between PID parameters and a measure of success in controlling the system; ii) determining the measure of success of the configuration of respective PID parameters for the plurality of PID controllers in controlling the system; and iii) adjusting, based on the measure of success of the configuration of respective PID parameters for the plurality of PID controllers in controlling the system, the causal model.
    Type: Application
    Filed: October 3, 2019
    Publication date: May 5, 2022
    Inventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson, Catherine A. Leatherdale, Don V. West
  • Publication number: 20220128955
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining causal models for controlling environments. One of the methods includes repeatedly selecting, by a control system for the environment, control settings for the environment based on internal parameters of the control system, wherein: at least some of the control settings for the environment are selected based on a causal model, and the internal parameters include a first set of internal parameters that define a number of previously received performance metric values that are used to generate the causal model for a particular controllable element; obtaining, for each selected control setting, a performance metric value; determining that generating the causal model for the particular controllable element would result in higher system performance; and adjusting, based on the determining, the first set of internal parameters.
    Type: Application
    Filed: September 11, 2019
    Publication date: April 28, 2022
    Inventors: Gilles J. Benoit, Brian E. Brooks, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson
  • Publication number: 20220128979
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for optimizing a manufacturing process. In one aspect, the method comprises repeatedly performing the following: i) selecting a configuration of control settings for a manufacturing process, based on a causal model that measures causal relationships between control settings and a measure of a success of the manufacturing process; ii) determining the measure of the success of the manufacturing process using the configuration of control settings; and iii) adjusting, based on the measure of the success of the manufacturing process using the configuration of control settings, the causal model.
    Type: Application
    Filed: September 11, 2019
    Publication date: April 28, 2022
    Inventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson
  • Publication number: 20220121971
    Abstract: A system and methods for multivariant learning and optimization repeatedly generate self-organized experimental units (SOEUs) based on the one or more assumptions for a randomized multivariate comparison of process decisions to be provided to users of a system. The SOEUs are injected into the system to generate quantified inferences about the process decisions. Responsive to injecting the SOEUs, at least one confidence interval is identified within the quantified inferences, and the SOEUs are iteratively modified based on the at least one confidence interval to identify at least one causal interaction of the process decisions within the system. The causal interaction can be used for testing, diagnosis, and optimization of the system performance.
    Type: Application
    Filed: September 11, 2019
    Publication date: April 21, 2022
    Inventors: Gilles J. Benoit, Brian E. Brooks, Peter O. Olson, Tyler W. Olson
  • Publication number: 20220050428
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining causal models for controlling environments. One of the methods includes repeatedly selecting control settings for the environment based on (i) a causal model that identifies causal relationships between possible settings for controllable elements in the environment and environment responses that reflect a performance of the control system in controlling the environment and (ii) current values of a set of internal parameters; and during the repeatedly selecting: monitoring environment responses to the selected control settings; determining, based on the environment responses, an indication that one or more properties of the environment have changed; and in response, modifying the current values of one or more of the internal parameters.
    Type: Application
    Filed: September 11, 2019
    Publication date: February 17, 2022
    Inventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson
  • Publication number: 20220050427
    Abstract: Systems and methods for dynamically optimizing models used for sensor data analytics. An action is taken based on an analytics determination by systematically varying parameters of the analytical model using actions taken based on the analytics to determine the relative frequencies of hits, misses, false alarms, and correct rejections for particular model parameters. The model parameters for local analytics are selected based upon on signal detection theory analysis and the value or cost of each hit, miss, false alarm, or correct rejection.
    Type: Application
    Filed: October 27, 2021
    Publication date: February 17, 2022
    Inventors: Brian E. Brooks, Gilles J. Benoit
  • Publication number: 20210390401
    Abstract: Systems for optimizing business objectives of e-commerce content can include memory and a processor coupled to the memory. The processor can receive one or more assumptions for multivariate comparison of content. The content can be provided to users of an e-commerce system. The processor can repeatedly generate self-organizing experimental units (SOEUs) based on the one or more assumptions. The processor can inject the SOEUs into the online system to generate quantified inferences about the content. The processor can identify, responsive to injecting the SOEUs, at least one confidence interval within the quantified inferences. The processor can iteratively modify the SOEUs based on the at least one confidence interval to identify at least one causal interaction of the e-commerce content within the system. Other methods and apparatuses are described.
    Type: Application
    Filed: August 26, 2019
    Publication date: December 16, 2021
    Inventors: Brian E. Brooks, Gilles J. Benoit, Peter O.N. Olson, Thomas J. Barnidge, Audrey X. Yang, Frederick J. Arsenault, Tyler W. Olson, Jennifer S. Hilpisch
  • Publication number: 20210336471
    Abstract: Method for active battery management to optimize battery performance. The method includes providing signal injections for charging and discharging of a battery. The signal injections include various charging and discharging profiles, rates, and endpoints. Response signals corresponding with the signal injections are received, and a utility of those signals is measured. Based upon the utility of the response signals, data relating to charging and discharging of the battery is modified to optimize battery performance and to determine when to discharge the battery into a power grid in order to return power to the grid in exchange for an economic benefit such as a payment or rebate from a utility company.
    Type: Application
    Filed: September 10, 2019
    Publication date: October 28, 2021
    Inventors: Catherine A. Leatherdale, Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson, Vincent J.L. Chevrier, Don Vincent West, Brandon A. Bartling
  • Publication number: 20210319471
    Abstract: Systems and methods for organizing and controlling the display of content, then measuring the effectiveness of that content in modifying behavior, within a particular temporal and special dimension, so as to minimize or eliminate confounding effects.
    Type: Application
    Filed: June 23, 2021
    Publication date: October 14, 2021
    Inventors: Frederick J. Arsenault, Brian E. Brooks