Patents by Inventor Brian L. Webb

Brian L. Webb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080119370
    Abstract: A substrate plate or device adapted for use with biological or chemical assays is disclosed. The device may take the form of a multi-well plate having a three-dimensional, porous layer as part of a support surface within each well for immobilizing probe species. The porous layer is characterized as having a plurality of interconnected voids defined by a matrix of contiguous solid material. A method and its variants are also described.
    Type: Application
    Filed: October 11, 2007
    Publication date: May 22, 2008
    Inventors: Ye Fang, Ann M. Ferrie, Yulong Hong, Brian L. Webb
  • Patent number: 7332328
    Abstract: A device and methods for performing biological or chemical analysis is provided. The device includes an array of three-dimensional microcolumns projecting away from a support plate. Each microcolumn has a relatively planar, first surface remote from the support plate. An array of multiple, different biological materials may be attached to the first surface. The device, when used in combination with existent micro-titer well plates, can improve efficiency of binding assays using microarrays for high-throughput capacity.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: February 19, 2008
    Assignee: Corning Incorporated
    Inventors: Brian L. Webb, Jinlin Peng, Michael D. Brady, Mircea Despa, Keith A. Horn, Joydeep Lahiri, David M. Root, James B. Stamatoff, Po Ki Yuen
  • Patent number: 7105347
    Abstract: Methods for performing surface-mediated protein delivery into living cells, and fabricating protein-transfected cell cluster arrays are provided. The method comprises providing a protein-containing mixture; depositing said protein-containing mixture onto a surface at defined locations; affixing the protein-containing mixture to the surface as microspots; and plating cells onto the surface in sufficient density and under conditions for the proteins to be delivered into the cells. The protein-containing mixture comprises any suitable amino acid sequence, including peptides, proteins, protein-domains, antibodies, or protein-nucleic acid conjugates, etc., with a carrier reagent. Protein-transfected cell arrays may be used for rapid and direct, screening of protein or enzymatic functions or any given intracellular protein interaction in the natural environment of a living cell, as well as for high-throughput screening of other biological and chemical analytes, which affect the functions of these proteins.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: September 12, 2006
    Assignee: Corning Incorporated
    Inventors: Ye Fang, Fang Lai, Laurent A. G. Picard, Brian L. Webb
  • Publication number: 20040146944
    Abstract: Systems, methods and kits that utilize uniquely coded microparticles for performing protein assays are provided. The uniquely coded microparticles are used as a substrate for reverse protein delivery into cells. The microparticles and methods offer the possibility of studying the biological functions of either a single protein of interest in multiple cell types per assay or multiple proteins in a single cell type.
    Type: Application
    Filed: January 29, 2003
    Publication date: July 29, 2004
    Inventors: Ye Fang, Brian L. Webb
  • Publication number: 20040023391
    Abstract: Methods for performing surface-mediated protein delivery into living cells, and fabricating protein-transfected cell cluster arrays are provided. The method comprises providing a protein-containing mixture; depositing said protein-containing mixture onto a surface at defined locations; affixing the protein-containing mixture to the surface as microspots; and plating cells onto the surface in sufficient density and under conditions for the proteins to be delivered into the cells. The protein-containing mixture comprises any suitable amino acid sequence, including peptides, proteins, protein-domains, antibodies, or protein-nucleic acid conjugates, etc., with a carrier reagent. Protein-transfected cell arrays may be used for rapid and direct, screening of protein or enzymatic functions or any given intracellular protein interaction in the natural environment of a living cell, as well as for high-throughput screening of other biological and chemical analytes, which affect the functions of these proteins.
    Type: Application
    Filed: July 30, 2002
    Publication date: February 5, 2004
    Inventors: Ye Fang, Fang Lai, Laurent A.G. Picard, Brian L. Webb
  • Patent number: 6670129
    Abstract: A cell transfection apparatus and methods for making and using the cell transfection apparatus are described. The cell transfection apparatus has a surface on which there is printed at different locations one or more foreign biomolecules (e.g., DNA, RNA, oligonucleotides, nucleotides). The foreign biomolecules can be printed at the same time. The surface is then covered with a transfection reagent which is incubated and removed from the surface before cells in a cell growth media are placed on the surface. The surface is configured such that the cells which become transfected with one or more foreign biomolecules are segregated from the cells which fail to become transfected with one or more foreign biomolecules. There are disclosed two embodiments of the cell transfection apparatus.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: December 30, 2003
    Assignee: Corning Incorporated
    Inventors: Brian L. Webb, Bernice I. Feuer, Laurent A. G. Picard
  • Patent number: 6652878
    Abstract: A cell transfection apparatus and methods for making and using the cell transfection apparatus are described. The cell transfection apparatus has a surface on which there is printed at different locations one or more foreign biomolecules (e.g., DNA, RNA, oligonucleotides, nucleotides). The foreign biomolecules can be printed at the same time. The surface is then covered with a transfection reagent which is incubated and removed from the surface before cells in a cell growth media are placed on the surface. The surface is configured such that the cells which become transfected with one or more foreign biomolecules are segregated from the cells which fail to become transfected with one or more foreign biomolecules. There are disclosed two embodiments of the cell transfection apparatus.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: November 25, 2003
    Assignee: Corning Incorporated
    Inventors: Brian L. Webb, Bernice I. Feuer, Laurent A. G. Picard
  • Publication number: 20030124029
    Abstract: A device and methods for performing biological or chemical analysis is provided. The device includes an array of three-dimensional microcolumns projecting away from a support plate. Each microcolumn has a relatively planar, first surface remote from the support plate. An array of multiple, different biological materials may be attached to the first surface. The device, when used in combination with existent micro-titer well plates, can improve efficiency of binding assays using microarrays for high-throughput capacity.
    Type: Application
    Filed: September 6, 2002
    Publication date: July 3, 2003
    Inventors: Brian L. Webb, Jinlin Peng, Michael D. Brady, Mircea Despa, Keith A. Horn, Joydeep Lahiri, David M. Root, James B. Stamatoff
  • Publication number: 20030100111
    Abstract: A cell transfection apparatus and methods for making and using the cell transfection apparatus are described. The cell transfection apparatus has a surface on which there is printed at different locations one or more foreign biomolecules (e.g., DNA, RNA, oligonucleotides, nucleotides). The foreign biomolecules can be printed at the same time. The surface is then covered with a transfection reagent which is incubated and removed from the surface before cells in a cell growth media are placed on the surface. The surface is configured such that the cells which become transfected with one or more foreign biomolecules are segregated from the cells which fail to become transfected with one or more foreign biomolecules. There are disclosed two embodiments of the cell transfection apparatus.
    Type: Application
    Filed: September 24, 2001
    Publication date: May 29, 2003
    Applicant: Corning Incorporated
    Inventors: Brian L. Webb, Bernice I. Feuer, Laurent A.G. Picard
  • Publication number: 20030092181
    Abstract: A cell transfection apparatus and methods for making and using the cell transfection apparatus are described. The cell transfection apparatus has a surface on which there is printed at different locations one or more foreign biomolecules (e.g., DNA, RNA, oligonucleotides, nucleotides). The foreign biomolecules can be printed at the same time. The surface is then covered with a transfection reagent which is incubated and removed from the surface before cells in a cell growth media are placed on the surface. The surface is configured such that the cells which become transfected with one or more foreign biomolecules are segregated from the cells which fail to become transfected with one or more foreign biomolecules. There are disclosed two embodiments of the cell transfection apparatus.
    Type: Application
    Filed: May 24, 2002
    Publication date: May 15, 2003
    Inventors: Brian L. Webb, Bernice I. Feuer, Laurent A.G. Picard
  • Publication number: 20030049862
    Abstract: A biological assay device for use in molecular biology, pharmaceutical research, genomic analysis, combinatorial chemistry, and in the general field of the analysis of molecules that may be deposited on supports of various kinds is provided. Specifically, the present invention includes a fluidic or microfluidic device, which integrates fluidic capability into existing multi-well plates of standard configuration, for performing either single or continuous fluidic manipulations in a high-throughout format. Methods for the use and manufacture of these devices are also provided.
    Type: Application
    Filed: May 24, 2002
    Publication date: March 13, 2003
    Inventors: Lin He, Jinlin Peng, Youchun Shi, Brian L. Webb, Po Ki Yuen