Patents by Inventor Brian Lu

Brian Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9564329
    Abstract: A composite dielectric structure having one or more Leakage Blocking Layers (LBL) interleaved with one or more Laminate Dielectric Layers (LDL), Alloy Dielectric Layers (ADL), or Co-deposit Dielectric Layers (CDL). Each LDL, ADL, and CDL includes dopants incorporated in a respective base dielectric layer (BDL); where LDLs are formed by incorporating a doping layer into a BDL using a laminate method, ADLs are formed by incorporating a dopant into a BDL using an alloying method; and CDLs are formed by pulsing a BDL base material and a dopant together using a co-deposit method.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: February 7, 2017
    Assignee: AIXTRON, SE
    Inventors: Kay Song, Minghang Li, Brian Lu
  • Publication number: 20160068961
    Abstract: Methods and systems for forming a material on a substrate are provided. Aspects of the methods involve the controlled introduction of a plurality of vapor reactants into a deposition chamber to form a material on the substrate having uniform surface roughness, conformality, thickness and composition. Aspects of the systems include a vapor feed component, a vapor distribution component, a containment component, and a controller configured to operate the systems to carry out the methods.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 10, 2016
    Inventors: Ming-Te Liu, Lin Yang, Jerry Mack, Zia Karim, Brian Lu
  • Patent number: 9257302
    Abstract: Provided are methods of filling gaps on a substrate by creating flowable silicon oxide-containing films. The methods involve introducing vapor-phase silicon-containing precursor and oxidant reactants into a reaction chamber containing the substrate under conditions such that a condensed flowable film is formed on the substrate. The flowable film at least partially fills gaps on the substrate. In certain embodiments, the methods involve using a catalyst in the formation of the film. The catalyst may be incorporated into one of the reactants and/or introduced as a separate reactant.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: February 9, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Feng Wang, Brian Lu, Nerissa Draeger, Vishal Gauri, Raashina Humayun, Michal Danek, Bart van Schravendijk, Lakshminarayana Nittala
  • Patent number: 9159608
    Abstract: There is disclosed a method for forming a TiSiN thin film on a substrate according to ALD including a first process of preheating a substrate while supplying Ar or N2 containing inert gas to a chamber, after disposing a substrate in a chamber; a second process of forming a TiN film on the substrate by repeating at least one time a process of purging over-supplied Ti containing gas after supplying Ti containing gas and inert gas after that and a process of purging residual product after supplying N containing gas and inert gas after that; a third process of forming a SiN film by repeating at least one time a process of purging over-supplied Si containing gas after supplying Si containing gas on the TiN film and supplying inert gas after that and a process of purging residual product after supplying N containing gas and supplying inert gas after that; and a fourth process of forming a TiSiN film having a desired thickness by repeating the second and third processes at least one time, a partial pressure range of
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: October 13, 2015
    Assignee: Aixtron SE
    Inventors: Woong Park, Young Jin Jang, Gi Youl Kim, Brian Lu, Greg Siu, Hugo Silva, Sasangan Ramanathan
  • Publication number: 20150155157
    Abstract: A composite dielectric structure having one or more Leakage Blocking Layers (LBL) interleaved with one or more Laminate Dielectric Layers (LDL), Alloy Dielectric Layers (ADL), or Co-deposit Dielectric Layers (CDL). Each LDL, ADL, and CDL includes dopants incorporated in a respective base dielectric layer (BDL); where LDLs are formed by incorporating a doping layer into a BDL using a laminate method, ADLs are formed by incorporating a dopant into a BDL using an alloying method; and CDLs are formed by pulsing a BDL base material and a dopant together using a co-deposit method.
    Type: Application
    Filed: November 25, 2014
    Publication date: June 4, 2015
    Inventors: Kay Song, Minghang Li, Brian Lu
  • Publication number: 20150140234
    Abstract: The invention relates to a device for manufacturing nanostructures consisting of carbon, such as monolayers, multilayer sheet structures, tubes, or fibers having a gas inlet element (2) having a housing cavity (5) enclosed by housing walls (3, 3?, 3?), into which a gas feed line (6) opens, through which a gaseous, in particular carbonaceous starting material can be fed into the housing cavity (5), having a plasma generator, which has components (8, 9, 10) arranged at least partially in the housing cavity (5), which has at least one plasma electrode (9) to which electrical voltage can be applied, to apply energy to the gaseous starting material by igniting a plasma and thus convert it into a gaseous intermediate product, and having a gas outlet surface (4) having a plurality of gas outlet openings (7), through which the gaseous intermediate product can exit out of the housing cavity (5). A gas heating unit (11) is provided for assisting the conversion, which is arranged downstream of the components (8, 9, 10).
    Type: Application
    Filed: November 19, 2014
    Publication date: May 21, 2015
    Inventors: Ian Blackburn, Brian Lu, Kenneth Teo, Nalin Rupesinghe
  • Publication number: 20150050806
    Abstract: There is disclosed a method for forming a TiSiN thin film on a substrate according to ALD including a first process of preheating a substrate while supplying Ar or N2 containing inert gas to a chamber, after disposing a substrate in a chamber; a second process of forming a TiN film on the substrate by repeating at least one time a process of purging over-supplied Ti containing gas after supplying Ti containing gas and inert gas after that and a process of purging residual product after supplying N containing gas and inert gas after that; a third process of forming a SiN film by repeating at least one time a process of purging over-supplied Si containing gas after supplying Si containing gas on the TiN film and supplying inert gas after that and a process of purging residual product after supplying N containing gas and supplying inert gas after that; and a fourth process of forming a TiSiN film having a desired thickness by repeating the second and third processes at least one time, a partial pressure range of
    Type: Application
    Filed: April 8, 2013
    Publication date: February 19, 2015
    Inventors: Woong Park, Young Jin Jang, Gi Youl Kim, Brian Lu, Greg Siu, Hugo Silva, Sasangan Ramanathan
  • Patent number: 8805828
    Abstract: A system is configured to identify prior search history associated with a user, where the prior search history includes information regarding searches initiated by the user and information regarding search results provided based on the searches. The system is further configured to filter the prior search history to select one of the search results, generate an information item for the search result, and provide the information item to a client, associated with the user, for presentation on a display associated with the client.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: August 12, 2014
    Assignee: Google Inc.
    Inventors: Brian Lu Ngo, Nicholas Gordon Fey, Junichi Uekawa, Noritaka Adachi
  • Patent number: 8215262
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. In one embodiment, a cluster tool for processing a substrate includes a first processing rack, a first robot assembly and a second robot assembly operable to transfer substrates to substrate processing chambers in the first processing rack, and a horizontal motion assembly. The horizontal motion assembly includes one or more walls that form an interior region in which a motor is enclosed. The one or more walls defining an elongated opening through which a robot support interface travels, the robot support interface supporting a robot of the horizontal motion assembly.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: July 10, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lu
  • Patent number: 8187951
    Abstract: Methods of lining and/or filling gaps on a substrate by creating flowable silicon oxide-containing films are provided. The methods involve introducing vapor-phase silicon-containing precursor and oxidant reactants into a reaction chamber containing the substrate under conditions such that a condensed flowable film is formed on the substrate. The flowable film at least partially fills gaps on the substrates and is then converted into a silicon oxide film. In certain embodiments, the methods involve using a catalyst, e.g., a nucleophile or onium catalyst, in the formation of the film. The catalyst may be incorporated into one of the reactants and/or introduced as a separate reactant. Also provided are methods of converting the flowable film to a solid dielectric film. The methods of this invention may be used to line or fill high aspect ratio gaps, including gaps having aspect ratios ranging from 3:1 to 10:1.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: May 29, 2012
    Assignee: Novellus Systems, Inc.
    Inventors: Feng Wang, Victor Y. Lu, Brian Lu, Wai-Fan Yau, Nerissa Draeger
  • Patent number: 8181596
    Abstract: An apparatus for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, a smaller system footprint, and a more repeatable wafer history. Embodiments provide for a cluster tool comprising first and second processing racks, each having two or more vertically stacked substrate processing chambers, a first robot assembly able to access the first processing rack from a first side, a second robot assembly able to access the first processing rack from a second side and the second processing rack from a first side, a third robot assembly able to access the second processing rack from a second side, and a fourth robot assembly able to access the first and second processing racks and to load substrates in a cassette.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: May 22, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lu
  • Patent number: 8146530
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. Embodiments also provide for a method and apparatus that are used to improve the coater chamber, the developer chamber, the post exposure bake chamber, the chill chamber, and the bake chamber process results. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: April 3, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lu
  • Patent number: 7888273
    Abstract: Multi-cycle methods result in dense, seamless and void-free dielectric gap fill are provided. The methods involve forming liquid or flowable films that partially fill a gap, followed by a solidification and/or anneal process that uniformly densifies the just-formed film. The thickness of the layer formed is such that the subsequent anneal process creates a film that does not have a density gradient. The process is then repeated as necessary to wholly or partially fill or line the gap as desired. The methods of this invention may be used to line or fill high aspect ratio gaps, including gaps having aspect ratios greater than about 6:1 with widths less than about 0.13 ?m.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: February 15, 2011
    Assignee: Novellus Systems, Inc.
    Inventors: Feng Wang, Victor Y. Lu, Brian Lu, Wai-Fan Yau
  • Patent number: 7678709
    Abstract: A deposition method modulates the reaction rate and thickness of highly conformal dielectric films deposited by forming a saturated catalytic layer on the surface and then exposing the surface to silicon-containing precursor gas and a reaction modulator, which may accelerate or quench the reaction. The modulator may be added before, after, or during exposure of the silicon-containing precursor gas. The film thickness after one cycle of deposition may be increased up to 20 times or decreased up to 20 times.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: March 16, 2010
    Assignee: Novellus Systems, Inc.
    Inventors: Brian Lu, Wai-Fan Yau, Collin Mui, Bunsen Nie, Raihan Tarafdar
  • Patent number: 7629227
    Abstract: Methods of lining and/or filling gaps on a substrate by creating flowable silicon oxide-containing films are provided. The methods involve introducing vapor-phase silicon-containing precursor and oxidant reactants into a reaction chamber containing the substrate under conditions such that a condensed flowable film is formed on the substrate. The flowable film at least partially fills gaps on the substrates and is then converted into a silicon oxide film. In certain embodiments, the methods involve using a catalyst, e.g., a nucleophile or onium catalyst, in the formation of the film. The catalyst may be incorporated into one of the reactants and/or introduced as a separate reactant. Also provided are methods of converting the flowable film to a solid dielectric film. The methods of this invention may be used to line or fill high aspect ratio gaps, including gaps having aspect ratios ranging from 3:1 to 10:1.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: December 8, 2009
    Assignee: Novellus Systems, Inc.
    Inventors: Feng Wang, Victor Y. Lu, Brian Lu, Wai-Fan Yau, Nerissa Draeger
  • Publication number: 20090064929
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. In one embodiment, the cluster tool is adapted to perform a track lithography process in which a substrate is coated with a photosensitive material, is then transferred to a stepper/scanner, which exposes the photosensitive material to some form of radiation to form a pattern in the photosensitive material, which is then removed in a developing process completed in the cluster tool.
    Type: Application
    Filed: October 20, 2008
    Publication date: March 12, 2009
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lu
  • Patent number: 7381662
    Abstract: Methods for improving the mechanical properties of a CDO film are provided. The methods involve, for instance, providing either a dense CDO film or a porous CDO film in which the porogen has been removed followed by curing the CDO film at an elevated temperature using either a UV light treatment, an e-beam treatment, or a plasma treatment such that the curing improves the mechanical toughness of the CDO dielectric film.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: June 3, 2008
    Assignee: Novellus Systems, Inc.
    Inventors: Dong Niu, Haiying Fu, Brian Lu, Feng Wang
  • Patent number: 7094713
    Abstract: Methods for improving the mechanical properties of a CDO film are provided. The methods involve, for instance, providing either a dense CDO film or a porous CDO film in which the porogen has been removed followed by curing the CDO film at an elevated temperature using either a UV light treatment, an e-beam treatment, or a plasma treatment such that the curing improves the mechanical toughness of the CDO dielectric film.
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: August 22, 2006
    Assignee: Novellus Systems, Inc.
    Inventors: Dong Niu, Haiying Fu, Brian Lu, Feng Wang