Patents by Inventor Brian Lue

Brian Lue has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170011029
    Abstract: Embodiments of the present invention provide a system, method, and article of hybrid human machine learning system with tagging and scoring techniques for sentiment magnitude scoring of textual passages. The combination of machine learning systems with data from human pooled language extraction techniques enable the present system to achieve high accuracy of human sentiment measurement and textual categorization of raw text, blog posts, and social media streams. This information can then be aggregated to provide brand and product strength analysis. A data processing module is configured to get streaming data and then tag the streaming data automatically using the machine learning output. A crowdsourcing module is configured to select a subset of social media posts that have been previously stored in the database, and present the social media posts on the web, which then tags each social media with a selected set of attributes.
    Type: Application
    Filed: September 20, 2016
    Publication date: January 12, 2017
    Inventors: Manjirnath CHATTERJEE, Rabia TURAN, Brian LUE, Ankur AGRAWAL, Kevin PERILLO
  • Patent number: 9471883
    Abstract: Embodiments of the present invention provide a system, method, and article of hybrid human machine learning system with tagging and scoring techniques for sentiment magnitude scoring of textual passages. The combination of machine learning systems with data from human pooled language extraction techniques enable the present system to achieve high accuracy of human sentiment measurement and textual categorization of raw text, blog posts, and social media streams. This information can then be aggregated to provide brand and product strength analysis. A data processing module is configured to get streaming data and then tag the streaming data automatically using the machine learning output. A crowdsourcing module is configured to select a subset of social media posts that have been previously stored in the database, and present the social media posts on the web, which then tags each social media with a selected set of attributes.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: October 18, 2016
    Assignee: MOODWIRE, INC.
    Inventors: Manjirnath Chatterjee, Rabia Turan, Brian Lue, Ankur Agrawal, Kevin Perillo
  • Patent number: 9213997
    Abstract: The present invention is directed to a method, system, and article of manufacture for systematically and automatically identifying abnormal or collective behavior patterns in microblogging messages that produce burst phenomena, such as Twitter storms. A microblogging storm engine in a storm detection server is configured to detect and classify the volume, shape, and type of a Twitter storm when keying on topics such as, but not limited to, a brand, an event, a person, an entity, a country, or a controversial issue. The microblogging storm engine comprises a storm detection module, a storm classification module, a database interface module, and a sentiment process module. The storm detection module is configured to detect different patterns of microblogging storms by capturing the volume of a particular storm to assist in output statistical analysis. The storm classification module is configured to classify the storms into different types of a particular storm category.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: December 15, 2015
    Assignee: MOODWIRE, INC.
    Inventors: Manjirnath Chatterjee, Rabia Turan, Brian Lue
  • Publication number: 20140337257
    Abstract: Embodiments of the present invention provide a system, method, and article of hybrid human machine learning system with tagging and scoring techniques for sentiment magnitude scoring of textual passages. The combination of machine learning systems with data from human pooled language extraction techniques enable the present system to achieve high accuracy of human sentiment measurement and textual categorization of raw text, blog posts, and social media streams. This information can then be aggregated to provide brand and product strength analysis. A data processing module is configured to get streaming data and then tag the streaming data automatically using the machine learning output. A crowdsourcing module is configured to select a subset of social media posts that have been previously stored in the database, and present the social media posts on the web, which then tags each social media with a selected set of attributes.
    Type: Application
    Filed: May 9, 2014
    Publication date: November 13, 2014
    Applicant: METAVANA, INC.
    Inventors: Manjirnath CHATTERJEE, Rabia TURAN, Brian LUE, Ankur AGRAWAL, Kevin PERILLO
  • Publication number: 20140114978
    Abstract: The present invention is directed to a method, system, and article of manufacture for systematically and automatically identifying abnormal or collective behavior patterns in microblogging messages that produce burst phenomena, such as Twitter storms. A microblogging storm engine in a storm detection server is configured to detect and classify the volume, shape, and type of a Twitter storm when keying on topics such as, but not limited to, a brand, an event, a person, an entity, a country, or a controversial issue. The microblogging storm engine comprises a storm detection module, a storm classification module, a database interface module, and a sentiment process module. The storm detection module is configured to detect different patterns of microblogging storms by capturing the volume of a particular storm to assist in output statistical analysis. The storm classification module is configured to classify the storms into different types of a particular storm category.
    Type: Application
    Filed: October 24, 2013
    Publication date: April 24, 2014
    Applicant: METAVANA, INC.
    Inventors: Manjirnath CHATTERJEE, Rabia TURAN, Brian LUE
  • Patent number: 8550031
    Abstract: Embodiments of the invention generally include a robot assembly comprising a robot operable to position a substrate at one or more points within a plane, and a motion assembly having a motor operable to position the robot in a direction generally parallel to a first direction. The motion assembly comprises a robot support interface having the robot coupled thereto, and one or more walls that form an interior region in which the motor is enclosed. The walls define an elongated opening through which the robot support interface travels, and the motor is operable to move the robot support interface laterally in the elongated opening. The motion assembly further comprises one or more fan assemblies that are in fluid communication with the interior region. The fan assemblies are operable to create a subatmospheric pressure in the interior region thereby causing gas to flow through the elongated opening into the interior region.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: October 8, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Publication number: 20120320361
    Abstract: Embodiments of the invention generally include a robot assembly comprising a robot operable to position a substrate at one or more points within a plane, and a motion assembly having a motor operable to position the robot in a direction generally parallel to a first direction. The motion assembly comprises a robot support interface having the robot coupled thereto, and one or more walls that form an interior region in which the motor is enclosed. The walls define an elongated opening through which the robot support interface travels, and the motor is operable to move the robot support interface laterally in the elongated opening. The motion assembly further comprises one or more fan assemblies that are in fluid communication with the interior region. The fan assemblies are operable to create a subatmospheric pressure in the interior region thereby causing gas to flow through the elongated opening into the interior region.
    Type: Application
    Filed: June 15, 2012
    Publication date: December 20, 2012
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchem, Brian Lue
  • Publication number: 20120180983
    Abstract: The present invention generally provides a cluster tool for processing a substrate. In one embodiment, the cluster tool comprises at least one processing rack, which comprises a first plurality of substrate processing chambers that are positioned adjacent to each other and aligned in a first direction, a second plurality of substrate processing chambers that are positioned adjacent to each other and adjacent to at least one of the first plurality of substrate processing chambers, the second plurality of substrate processing chambers being positioned in a second direction relative to the first direction, a first shuttle robot movable in the first direction for moving substrates between each of the first plurality of substrate processing chambers, and a second shuttle robot movable in the second direction for moving substrates between each of the second plurality of substrate processing chambers.
    Type: Application
    Filed: March 2, 2012
    Publication date: July 19, 2012
    Inventors: TETSUYA ISHIKAWA, RICK J. ROBERTS, HELEN R. ARMER, LEON VOLFOVSKI, JAY D. PINSON, MICHAEL RICE, DAVID H. QUACH, MOHSEN S. SALEK, ROBERT LOWRANCE, JOHN A. BACKER, WILLIAM TYLER WEAVER, CHARLES CARLSON, CHONGYANG WANG, JEFFREY HUDGENS, HARALD HERCHEN, BRIAN LUE
  • Patent number: 7925377
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. In one embodiment of the cluster tool, grouping substrates together, and transferring and processing the substrates in groups of two or more, improves system throughput, and reduces the number of moves a robot has to make to transfer a batch of substrates between the processing chambers, thus reducing wear on the robot and increasing system reliability. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: April 12, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue, John A. Backer
  • Patent number: 7743728
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool). In one embodiment, the cluster tool is adapted to perform a track lithography process in which a photosensitive material is applied to a substrate, patterned in a stepper/scanner, and then removed in a developing process completed in the cluster tool. In one embodiment of the cluster tool, substrates are grouped together in groups of two or more for transfer or processing to improve system throughput, reduce the number of moves a robot has to make to transfer a batch of substrates between the processing chambers, and thus increase system reliability. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: June 29, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Patent number: 7694647
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. Embodiments also provide for a method and apparatus that are used to improve the coater chamber, the developer chamber, the post exposure bake chamber, the chill chamber, and the bake chamber process results. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: April 13, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Publication number: 20090064928
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. In one embodiment, the cluster tool is adapted to perform a track lithography process in which a substrate is coated with a photosensitive material, is then transferred to a stepper/scanner, which exposes the photosensitive material to some form of radiation to form a pattern in the photosensitive material, which is then removed in a developing process completed in the cluster tool.
    Type: Application
    Filed: October 20, 2008
    Publication date: March 12, 2009
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Publication number: 20090067956
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. In one embodiment, the cluster tool is adapted to perform a track lithography process in which a substrate is coated with a photosensitive material, is then transferred to a stepper/scanner, which exposes the photosensitive material to some form of radiation to form a pattern in the photosensitive material, which is then removed in a developing process completed in the cluster tool.
    Type: Application
    Filed: October 20, 2008
    Publication date: March 12, 2009
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Publication number: 20080223293
    Abstract: A cluster tool for processing a substrate includes a cassette and a processing module including a first process chamber that is configured to perform a chill process on a substrate, a second processing chamber that is configured to perform a bake process on the substrate, and an input chamber. The first processing chamber, the second processing chamber, and the input chamber are substantially adjacent to each other. The processing modules also includes a robot that is configured to receive the substrate in the input chamber and transfer and position the substrate in the first processing chamber and second processing chamber. The robot includes a robot blade, an actuator, and a heat exchanging device. The heat exchanging device includes a chilled transfer assembly. The cluster tool also includes a 6-axis articulated robot configured to transfer the substrate between the cassette and the input chamber.
    Type: Application
    Filed: February 19, 2008
    Publication date: September 18, 2008
    Applicant: Sokudo Co,. Ltd.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Publication number: 20080199282
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool). In one embodiment, the cluster tool is adapted to perform a track lithography process in which a photosensitive material is applied to a substrate, patterned in a stepper/scanner, and then removed in a developing process completed in the cluster tool. In one embodiment of the cluster tool, substrates are grouped together in groups of two or more for transfer or processing to improve system throughput, reduce the number of moves a robot has to make to transfer a batch of substrates between the processing chambers, and thus increase system reliability. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.
    Type: Application
    Filed: April 21, 2008
    Publication date: August 21, 2008
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Patent number: 7357842
    Abstract: A cluster tool for processing a substrate includes a cassette and a processing module including a first processing chamber that is configured to perform a chill process on a substrate, a second processing chamber that is configured to perform a bake process on the substrate, and an input chamber. The first processing chamber, the second processing chamber, and the input chamber are substantially adjacent to each other. The processing module also includes a robot that is configured to receive the substrate in the input chamber and transfer and position the substrate in the first processing chamber and second processing chamber. The robot includes a robot blade, an actuator, and a heat exchanging device. The heat exchanging device includes a chilled transfer arm assembly. The cluster tool also includes a 6-axis articulated robot configured to transfer the substrate between the cassette and the input chamber.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: April 15, 2008
    Assignee: Sokudo Co., Ltd.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Publication number: 20070251456
    Abstract: An integrated system for baking and chilling wafers includes a heater for heating a wafer to an elevated temperature, a chiller for cooling the wafer, and a shuttle operatively connected to the heater and the chiller for transferring the wafer between the heater and the chiller. The chiller further includes a low thermal mass wafer support for providing support to a bottom surface of a wafer and a chill plate coupled to the low thermal mass wafer support for cooling the wafer. The low thermal mass wafer support has a higher thermal conductivity in the plane parallel to the bottom surface of the wafer than in the direction perpendicular to the bottom surface of the wafer. The low thermal mass wafer support can further include a plurality of proximity pins for supporting the wafer.
    Type: Application
    Filed: April 27, 2006
    Publication date: November 1, 2007
    Applicant: APPLIED MATERIALS, INC., A Delaware corporation
    Inventors: Harald Herchen, Sharathchandra Somayaji, Tetsuya Ishikawa, Brian Lue
  • Publication number: 20070246839
    Abstract: A method and apparatus related to a substrate support structure are provided. In accordance with one embodiment of the present invention, a method for manufacturing a substrate support structure including proximity pins and apparatus for supporting a substrate inside a semiconductor processing equipment are provided. The method includes providing a plate assembly comprising a plate and a plate surface and forming a plurality of recessed regions in the plate surface. Additionally, the method includes filling the recessed regions with a bonding material including epoxy material and placing a plurality of support members into the epoxy-coated recessed regions. The method further includes pushing the support members with a flat plate held up from the surface by shims to provide a uniform local height of the support members, followed by a curing step to fix the supporting members to the recessed regions.
    Type: Application
    Filed: April 21, 2006
    Publication date: October 25, 2007
    Applicant: Applied Materials, Inc.
    Inventors: Harald Herchen, Sharathchandra Somayaji, Brian Lue
  • Publication number: 20070165356
    Abstract: A support for a substrate processing chamber comprises a fluid circulating reservoir comprising a channel having serpentine convolutions. A fluid inlet supplies a heat transfer fluid to the fluid circulating reservoir and a fluid outlet discharges the heat transfer fluid. In one version, the channel is doubled over to turn back upon itself.
    Type: Application
    Filed: March 8, 2007
    Publication date: July 19, 2007
    Inventors: Andrew Nguyen, Wing Cheng, Hiroji Hanawa, Semyon Kats, Kartik Ramaswamy, Yan Ye, Kwok Wong, Daniel Hoffman, Tetsuya Ishikawa, Brian Lue
  • Publication number: 20070000441
    Abstract: Temperature of a processed workpiece may be regulated by flowing a thermal control fluid from a thermal source to a thermal drain, in a direction substantially normal to the plane occupied by the workpiece. This flow orientation ensures that any resulting temperature gradient in the thermal control fluid is also positioned substantially normal to the substrate, thereby avoiding processing variation in different areas of the workpiece attributable to an in-plane gradient. The thermal control fluid may be flowed from a common source to a plurality of pixel-like regions proximate to the workpiece, in order to ensure uniform temperature control. Use of such pixel-like regions promotes scalability of the temperature control apparatus.
    Type: Application
    Filed: April 12, 2006
    Publication date: January 4, 2007
    Applicant: Applied Materials, Inc.
    Inventor: Brian Lue