Patents by Inventor Brian Lue

Brian Lue has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5748434
    Abstract: A shield (5) for an electrostatic chuck (4) includes a first shield member (60) circumscribing the chuck and a second shield member (62) supported over the first shield member. The second shield member has an upper surface surrounding the wafer and exposed to deposition from gases within the process chamber. Splitting the shield into two members increases the ratio of exposed surface to thermal mass of the second shield member, which increases the temperature of the second shield member during processing, thereby decreasing the rate of deposition thereon. In addition, the clean rate or deposition removal rate of the shield is typically a function of its temperature (i.e., the hotter the shield becomes during processing, the faster it can be cleaned). Therefore, the clean rate of the second shield member will be increased, thereby enhancing the throughput of the process.
    Type: Grant
    Filed: June 14, 1996
    Date of Patent: May 5, 1998
    Assignee: Applied Materials, Inc.
    Inventors: Kent Rossman, Brian Lue, Fred C. Redeker
  • Patent number: 5720818
    Abstract: The present invention discloses a two basic structures (including multiple variations within one of the basic structures) and methods for fabrication of the structures which facilitate the flow of cooling gas or other heat transfer fluid to the surface of an electrostatic chuck. The basic structures address both the problem of breakdown of a heat transfer gas in an RF plasma environment and the problem of arcing between a semiconductor substrate and the conductive pedestal portion of the electrostatic chuck in such an RF plasma environment.
    Type: Grant
    Filed: April 26, 1996
    Date of Patent: February 24, 1998
    Assignee: Applied Materials, Inc.
    Inventors: Arik Donde, Dan Maydan, Robert J. Steger, Edwin C. Weldon, Brian Lue, Timothy Dyer
  • Patent number: 5715132
    Abstract: The basic structure facilitates the flow of cooling gas or other heat transfer fluid to the surface of an electrostatic chuck addresses the problem of the RF plasma environment which seeks the interface between the electrostatic chuck dielectric surface layer and its underlying conductive layer, and includes an underlying conductive layer which contains at least one gas flow passageway and at least one dielectric layer overlying said conductive layer. The dielectric layer forms the upper surface of the chuck and contains at least one opening or passageway which connects with the fluid flow passageway in the conductive layer. The distance between the upper surface of the conductive layer and the upper surface of the chuck is greater in the area adjacent to the opening to a fluid flow passageway to the upper surface of the chuck. As a result, the dielectric layer thickness is greater in the area adjacent to the opening or passageway than at other locations on the surface of the chuck.
    Type: Grant
    Filed: March 28, 1996
    Date of Patent: February 3, 1998
    Assignee: Applied Materials, Inc.
    Inventors: Robert J. Steger, Brian Lue
  • Patent number: 5644467
    Abstract: The present invention discloses a basic structure and a method for fabrication of the structure which facilitates the flow of cooling gas or other heat transfer fluid to the surface of an electrostatic chuck. The basic structure addresses the problem of the rf plasma environment which seeks the interface between the electrostatic chuck dielectric surface layer and its underlying conductive layer. The basic structure includes an underlying conductive layer which contains at least one gas flow passageway and at least one dielectric layer overlying said conductive layer. The dielectric layer forms the upper surface of the dielectric chuck and contains at least one opening or passageway which connects with the fluid flow passageway in the conductive layer. The dielectric layer thickness is greater in the area of the opening or passageway than at other locations on the surface of the dielectric chuck.
    Type: Grant
    Filed: September 28, 1995
    Date of Patent: July 1, 1997
    Assignee: Applied Materials, Inc.
    Inventors: Robert J. Steger, Brian Lue