Patents by Inventor BRIAN P. GEORGE

BRIAN P. GEORGE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140200473
    Abstract: A method can determine one or more origins of focal activation. The method can include computing phase for the electrical signals at a plurality of nodes distributed across a geometric surface based on the electrical data across time. The method can determine whether or not a given candidate node of the plurality of nodes is a focal point based on the analyzing the computed phase and magnitude of the given candidate node. A graphical map can be generated to visualize focal points detected on the geometric surface.
    Type: Application
    Filed: January 16, 2014
    Publication date: July 17, 2014
    Applicant: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: QINGGUO ZENG, Remi Dubois, Ping Jia, Ryan Bokan, Venkatesh Vasudevan, Charulatha Ramanathan, Maria Strom, Brian P. George
  • Publication number: 20140088395
    Abstract: A non-transitory computer-readable medium can have instructions executable by a processor. The instructions can include an electrogram reconstruction method to generate reconstructed electrogram signals for each of a multitude of points residing on or near a predetermined cardiac envelope based on geometry data and non-invasively measured body surface electrical signals. The instructions can include a phase calculator to compute phase signals for the multitude of points based on the reconstructed electrogram signals and a visualization engine to generate an output based on the computed phase signals.
    Type: Application
    Filed: September 20, 2013
    Publication date: March 27, 2014
    Applicant: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Remi DUBOIS, Brian P. GEORGE, Charulatha RAMANATHAN, Qingguo ZENG, Maria STROM, Venkatesh VASUDEVAN, Ryan BOKAN, Ping JIA
  • Publication number: 20140067279
    Abstract: A method (500) can comprise performing principal component analysis (PCA) on data corresponding to a subset of a plurality of signals and a selected template to generate a virtual lead and an optimized template (530). The method can also comprise calculating a cross correlation on the virtual lead and the optimized template to determine a strength of linear dependence between the virtual lead and the optimized template to determine regions of interest (ROIs) of the virtual lead (540). The method can further comprise detecting peak correlation coefficients in the virtual lead (550). The method can still further comprise comparing the amplitude of each of the ROIs of the virtual lead with the selected template to determine an error between the template and each ROI of the virtual lead (560). The method can yet further comprise averaging the ROIs to generate averaged data (570).
    Type: Application
    Filed: May 4, 2012
    Publication date: March 6, 2014
    Inventors: Brian P. George, Remi Dubois, Charulatha Ramanathan, Harold Wodlinger
  • Publication number: 20130324871
    Abstract: Systems and methods can be used to determine activation information for points along a surface or selected region of interest. In one example, a computer-readable medium having computer-executable instructions for performing a method that includes computing a local activation vector based on relative timing among electrical signals corresponding to neighboring points of a plurality of points on a surface envelope. An activation time can be computed for each of the plurality of points as a function of corresponding local activation vectors.
    Type: Application
    Filed: September 16, 2011
    Publication date: December 5, 2013
    Applicant: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Remi Dubois, Harold Wodlinger, Charulatha Ramanathan, Brian P. George, Pierre Roussel-Ragot
  • Publication number: 20130304407
    Abstract: A computer-implemented method can include determining an amplitude for each of a plurality of input channels, corresponding to respective nodes. A measure of similarity can be computed between the input channel of each node and the input channel of its neighboring nodes. The method can also include comparing an amplitude for each node relative to other nodes to determine temporary bad channels. For each of the temporary bad channels, a measure of similarity can be computed between the input channel of each node and the input channel of its neighboring nodes. Channel integrity can then be identified based on the computed measures of similarity.
    Type: Application
    Filed: May 8, 2013
    Publication date: November 14, 2013
    Applicant: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: BRIAN P. GEORGE, CHARULATHA RAMANTHAN, PING JIA, QINGGUO ZENG, VENKATESH VASUDEVAN, MARIA STROM, RYAN BOKAN, REMI DUBOIS