Patents by Inventor Brian Paul Ginsburg

Brian Paul Ginsburg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200309904
    Abstract: An integrated circuit (IC) is provided with a plurality of diode based mm-wave peak voltage detectors (PVD)s. During a testing phase, a multi-point low frequency calibration test is performed on one or more of the PVDs to determine and store a set of alternating current (AC) coefficients. During operation of the IC, a current-voltage sweep is performed on a selected one of the PVDs to determine a process and temperature direct current (DC) coefficient. A peak voltage produced by the PVD in response to a high frequency radio frequency (RF) signal is measured to produce a first measured voltage. An approximate power of the RF signal is calculated by adjusting the first measured voltage using the DC coefficient and the AC coefficient.
    Type: Application
    Filed: June 11, 2020
    Publication date: October 1, 2020
    Inventors: Vito Giannini, Brian Paul Ginsburg
  • Patent number: 10746850
    Abstract: A radar system is provided that includes a first radar transceiver integrated circuit (IC) including transmission signal generation circuitry operable to generate a continuous wave signal and a first transmit channel coupled to the transmission generation circuitry to receive the continuous wave signal and transmit a test signal based on the continuous wave signal, and a second radar transceiver IC including a first receive channel coupled to an output of the first transmit channel of the first radar transceiver IC via a loopback path to receive the test signal from first the transmit channel, the second radar transceiver IC operable to measure phase response in the test signal.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: August 18, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Daniel Colum Breen, Brian Paul Ginsburg, Krishnanshu Dandu
  • Patent number: 10718852
    Abstract: An integrated circuit (IC) is provided with a plurality of diode based mm-wave peak voltage detectors (PVD)s. During a testing phase, a multi-point low frequency calibration test is performed on one or more of the PVDs to determine and store a set of alternating current (AC) coefficients. During operation of the IC, a current-voltage sweep is performed on a selected one of the PVDs to determine a process and temperature direct current (DC) coefficient. A peak voltage produced by the PVD in response to a high frequency radio frequency (RF) signal is measured to produce a first measured voltage. An approximate power of the RF signal is calculated by adjusting the first measured voltage using the DC coefficient and the AC coefficient.
    Type: Grant
    Filed: October 23, 2015
    Date of Patent: July 21, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Vito Giannini, Brian Paul Ginsburg
  • Publication number: 20200225315
    Abstract: A cascaded radar system is provided that includes a first radar system-on-a-chip (SOC) operable to perform an initial portion of signal processing for object detection on digital beat signals generated by multiple receive channels of the radar SOC, a second radar SOC operable to perform the initial portion of signal processing for object detection on digital beat signals generated by multiple receive channels in the radar SOC, and a processing unit coupled to the first radar SOC and the second radar SOC to receive results of the initial portion of signal processing from each radar SOC, the processing unit operable to perform a remaining portion of the signal processing for object detection using these results.
    Type: Application
    Filed: March 11, 2020
    Publication date: July 16, 2020
    Inventors: Jasbir Singh Nayyar, Brian Paul Ginsburg, Sudipto Bose, Murtaza Ali
  • Publication number: 20200209353
    Abstract: Methods for monitoring of performance parameters of one or more receive channels and/or one or more transmit channels of a radar system-on-a-chip (SOC) are provided. The radar SOC may include a loopback path coupling at least one transmit channel to at least one receive channel to provide a test signal from the at least one transmit channel to the at least one receive channel when the radar SOC is operated in test mode. In some embodiments, the loopback path includes a combiner coupled to each of one or more transmit channels, a splitter coupled to each of one or more receive channels, and a single wire coupling an output of the combiner to an input of the splitter.
    Type: Application
    Filed: March 12, 2020
    Publication date: July 2, 2020
    Inventors: Karthik Subburaj, Brian Paul Ginsburg, Daniel Colum Breen, Sandeep Rao, Karthik Ramasubramanian
  • Publication number: 20200186111
    Abstract: A system having a set of power amplifiers each having a primary inductive structure configured to provide an output signal. A secondary inductive structure is configured to inductively couple to each of the primary inductive structures. A transmission line is provided with a signal trace and a ground trace. The signal trace of the transmission line is connected to a first end of the secondary inductive structure. A return path from a second end of the secondary inductive structure is coupled via a resonant network to the ground trace of the transmission line, in which the return path is spaced away from the secondary inductive structure to minimize inductive coupling to the primary structures.
    Type: Application
    Filed: February 5, 2020
    Publication date: June 11, 2020
    Inventors: Krishnanshu Dandu, Brian Paul Ginsburg
  • Publication number: 20200174884
    Abstract: Data memory protection is provided for a signal processing system such as a radar system in which the data memory is protected with a common set of parity bits rather than requiring a set of parity bits for each memory word as in Error Correction Coded (ECC) memories. The common set of parity bits may be updated as memory words in the data memory are accessed as part of signal processing of one or more digital signals. The memory protection ensures that in the absence of memory errors the common parity bits are zero at the end of processing the digital signals as long as each word in the data memory that is used for storing the signal processing data is written and read an equal number of times.
    Type: Application
    Filed: February 11, 2020
    Publication date: June 4, 2020
    Inventors: Sandeep Rao, Karthik Ramasubramanian, Brian Paul Ginsburg
  • Patent number: 10627480
    Abstract: A cascaded radar system is provided that includes a first radar system-on-a-chip (SOC) operable to perform an initial portion of signal processing for object detection on digital beat signals generated by multiple receive channels of the radar SOC, a second radar SOC operable to perform the initial portion of signal processing for object detection on digital beat signals generated by multiple receive channels in the radar SOC, and a processing unit coupled to the first radar SOC and the second radar SOC to receive results of the initial portion of signal processing from each radar SOC, the processing unit operable to perform a remaining portion of the signal processing for object detection using these results.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: April 21, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jasbir Singh Nayyar, Brian Paul Ginsburg, Sudipto Bose, Murtaza Ali
  • Patent number: 10598767
    Abstract: Methods for monitoring of performance parameters of one or more receive channels and/or one or more transmit channels of a radar system-on-a-chip (SOC) are provided. The radar SOC may include a loopback path coupling at least one transmit channel to at least one receive channel to provide a test signal from the at least one transmit channel to the at least one receive channel when the radar SOC is operated in test mode. In some embodiments, the loopback path includes a combiner coupled to each of one or more transmit channels, a splitter coupled to each of one or more receive channels, and a single wire coupling an output of the combiner to an input of the splitter.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: March 24, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Karthik Subburaj, Brian Paul Ginsburg, Daniel Colum Breen, Sandeep Rao, Karthik Ramasubramanian
  • Patent number: 10599518
    Abstract: Data memory protection is provided for a signal processing system such as a radar system in which the data memory is protected with a common set of parity bits rather than requiring a set of parity bits for each memory word as in Error Correction Coded (ECC) memories. The common set of parity bits may be updated as memory words in the data memory are accessed as part of signal processing of one or more digital signals. The memory protection ensures that in the absence of memory errors the common parity bits are zero at the end of processing the digital signals as long as each word in the data memory that is used for storing the signal processing data is written and read an equal number of times.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: March 24, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sandeep Rao, Karthik Ramasubramanian, Brian Paul Ginsburg
  • Patent number: 10594279
    Abstract: A system having a set of power amplifiers each having a primary inductive structure configured to provide an output signal. A secondary inductive structure is configured to inductively couple to each of the primary inductive structures. A transmission line is provided with a signal trace and a ground trace. The signal trace of the transmission line is connected to a first end of the secondary inductive structure. A return path from a second end of the secondary inductive structure is coupled via a resonant network to the ground trace of the transmission line, in which the return path is spaced away from the secondary inductive structure to minimize inductive coupling to the primary structures.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: March 17, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Krishnanshu Dandu, Brian Paul Ginsburg
  • Publication number: 20190229425
    Abstract: A system having a set of power amplifiers each having a primary inductive structure configured to provide an output signal. A secondary inductive structure is configured to inductively couple to each of the primary inductive structures. A transmission line is provided with a signal trace and a ground trace. The signal trace of the transmission line is connected to a first end of the secondary inductive structure. A return path from a second end of the secondary inductive structure is coupled via a resonant network to the ground trace of the transmission line, in which the return path is spaced away from the secondary inductive structure to minimize inductive coupling to the primary structures.
    Type: Application
    Filed: March 29, 2019
    Publication date: July 25, 2019
    Inventors: Krishnanshu Dandu, Brian Paul Ginsburg
  • Publication number: 20190195987
    Abstract: A cascaded radar system is provided that includes a master radar system-on-a-chip (SOC) with transmission signal generation circuitry and a slave radar SOC coupled to an output of the master radar SOC to receive a signal from the transmission signal generation circuitry of the master SOC. In this system, the slave radar SOC is operable to measure phase noise in the signal received from the transmission signal generation circuitry of the master SOC.
    Type: Application
    Filed: February 26, 2019
    Publication date: June 27, 2019
    Inventor: Brian Paul Ginsburg
  • Publication number: 20190154797
    Abstract: Methods for monitoring of performance parameters of one or more receive channels and/or one or more transmit channels of a radar system-on-a-chip (SOC) are provided. The radar SOC may include a loopback path coupling at least one transmit channel to at least one receive channel to provide a test signal from the at least one transmit channel to the at least one receive channel when the radar SOC is operated in test mode. In some embodiments, the loopback path includes a combiner coupled to each of one or more transmit channels, a splitter coupled to each of one or more receive channels, and a single wire coupling an output of the combiner to an input of the splitter.
    Type: Application
    Filed: January 22, 2019
    Publication date: May 23, 2019
    Inventors: Karthik Subburaj, Brian Paul Ginsburg, Daniel Colum Breen, Sandeep Rao, Karthik Ramasubramanian
  • Patent number: 10291193
    Abstract: A system having a set of power amplifiers each having a primary inductive structure configured to provide an output signal. A secondary inductive structure is configured to inductively couple to each of the primary inductive structures. A transmission line is provided with a signal trace and a ground trace. The signal trace of the transmission line is connected to a first end of the secondary inductive structure. A return path from a second end of the secondary inductive structure is coupled via a resonant network to the ground trace of the transmission line, in which the return path is spaced away from the secondary inductive structure to minimize inductive coupling to the primary structures.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: May 14, 2019
    Assignee: Texas Instruments Incorporated
    Inventors: Krishnanshu Dandu, Brian Paul Ginsburg
  • Patent number: 10234542
    Abstract: Methods for monitoring of performance parameters of one or more receive channels and/or one or more transmit channels of a radar system-on-a-chip (SOC) are provided. The radar SOC may include a loopback path coupling at least one transmit channel to at least one receive channel to provide a test signal from the at least one transmit channel to the at least one receive channel when the radar SOC is operated in test mode. In some embodiments, the loopback path includes a combiner coupled to each of one or more transmit channels, a splitter coupled to each of one or more receive channels, and a single wire coupling an output of the combiner to an input of the splitter.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: March 19, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Karthik Subburaj, Brian Paul Ginsburg, Daniel Colum Breen, Sandeep Rao, Karthik Ramasubramanian
  • Patent number: 10215841
    Abstract: A cascaded radar system is provided that includes a master radar system-on-a-chip (SOC) with transmission signal generation circuitry and a slave radar SOC coupled to an output of the master radar SOC to receive a signal from the transmission signal generation circuitry of the master SOC. In this system, the slave radar SOC is operable to measure phase noise in the signal received from the transmission signal generation circuitry of the master SOC.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: February 26, 2019
    Assignee: Texas Instruments Incorporated
    Inventor: Brian Paul Ginsburg
  • Publication number: 20190011533
    Abstract: A frequency modulated continuous wave (FMCW) radar system is provided that includes a receiver configured to generate a digital intermediate frequency (IF) signal, and an interference monitoring component coupled to the receiver to receive the digital IF signal, in which the interference monitoring component is configured to monitor at least one sub-band in the digital IF signal for interference, in which the at least one sub-band does not include a radar signal.
    Type: Application
    Filed: August 31, 2018
    Publication date: January 10, 2019
    Inventors: Brian Paul Ginsburg, Karthik Subburaj, Karthik Ramasubramanian, Sachin Bhardwaj, Sriram Murali, Sandeep Rao
  • Publication number: 20190004148
    Abstract: A radar system is provided that includes a first radar transceiver integrated circuit (IC) including transmission signal generation circuitry operable to generate a continuous wave signal and a first transmit channel coupled to the transmission generation circuitry to receive the continuous wave signal and transmit a test signal based on the continuous wave signal, and a second radar transceiver IC including a first receive channel coupled to an output of the first transmit channel of the first radar transceiver IC via a loopback path to receive the test signal from first the transmit channel, the second radar transceiver IC operable to measure phase response in the test signal.
    Type: Application
    Filed: August 24, 2018
    Publication date: January 3, 2019
    Inventors: Daniel Colum Breen, Brian Paul Ginsburg, Krishnanshu Dandu
  • Publication number: 20180348342
    Abstract: A cascaded radar system is provided that includes a master radar system-on-a-chip (SOC) with transmission signal generation circuitry and a slave radar SOC coupled to an output of the master radar SOC to receive a signal from the transmission signal generation circuitry of the master SOC. In this system, the slave radar SOC is operable to measure phase noise in the signal received from the transmission signal generation circuitry of the master SOC.
    Type: Application
    Filed: July 27, 2018
    Publication date: December 6, 2018
    Inventor: Brian Paul Ginsburg