Patents by Inventor Brian R. York

Brian R. York has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130236744
    Abstract: A current-perpendicular-to-the-plane giant magnetoresistance (CPP-GMR) sensor has a multilayer reference layer containing a Heusler alloy. The multilayer reference layer may be a simple pinned layer or the AP2 layer of an antiparallel (AP)-pinned structure. The multilayer reference layer is formed of a crystalline non-Heusler alloy ferromagnetic layer on either an antiferromagnetic layer (in a simple pinned structure) or an antiparallel coupling (APC) layer (in an AP-pinned structure), a Heusler alloy layer adjacent the sensor's nonmagnetic electrically conducting spacer layer, and an intermediate substantially non-crystalline X-containing layer between the crystalline non-Heusler alloy layer and the Heusler alloy layer. The element X is selected from one or more of tantalum (Ta), hafnium (Hf), niobium (Nb) and boron (B).
    Type: Application
    Filed: March 8, 2012
    Publication date: September 12, 2013
    Inventors: Elizabeth Ann Brinkman, Matthew J. Carey, Jeffrey R. Childress, Young-suk Choi, Brian R. York
  • Publication number: 20130229728
    Abstract: A magnetic head according to one embodiment includes a nonmagnetic gap layer in a trench; a pole seed layer above the nonmagnetic gap layer; and a pole layer of a magnetic material above the pole seed layer, wherein at least one of the nonmagnetic gap layer, the pole seed layer and the pole layer has nitrogen therein. A magnetic head according to another embodiment includes a nonmagnetic gap layer in a trench; a pole seed layer above the nonmagnetic gap layer, the pole seed layer being comprised primarily of a material selected from a group consisting of NiCr, Ta/Ru, Ta/Rh, NiCr/Ru, NiCr/Rh, NiCr, CoOx, Ru, Rh, Cu, Au/MgO, Ta/Cu; and a pole layer comprised primarily of CoFe above the pole seed layer, wherein at least one of the nonmagnetic gap layer, the pole seed layer and the pole layer has nitrogen therein.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 5, 2013
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Elizabeth A. Brinkman, Ning Shi, Brian R. York
  • Publication number: 20120315505
    Abstract: A perpendicular magnetic recording disk has a graded-anisotropy recording layer (RL) formed of at least two ferromagnetically exchange coupled CoPtCr-oxide magnetic layers (MAG1 and MAG2) with two nucleation films (NF1 and NF2) between the magnetic layers. NF1 is a metal film, preferably Ru or a Ru-based alloy like RuCr, sputter deposited on MAG1 at low pressure to a thickness between about 0.1-1.5 nm. NF2 is a metal oxide film, preferably an oxide of Ta, sputter deposited on NF1 at high pressure to a thickness between about 0.2-1.0 nm. MAG2 is sputter deposited over NF2. NF1 and NF2 provide a significant reduction in average grain size in the RL from a graded-anisotropy RL without nucleation films between MAG1 and MAG2, while also assuring that MAG1 and MAG2 are strongly exchange coupled.
    Type: Application
    Filed: June 8, 2011
    Publication date: December 13, 2012
    Inventors: Ernesto E. Marinero, Dieter K. Weller, Brian R. York
  • Patent number: 8320232
    Abstract: A patterned perpendicular magnetic recording medium has discrete data islands that have first and second ferromagnetic layers (MAG1 and MAG2) with first and second nonmagnetic interlayers (IL1 and IL2) between MAG1 and MAG2. MAG1 and MAG2 may be similar CoPtCr alloys with similar thicknesses, with thicknesses of IL1 and IL2 that assure that MAG1 and MAG2 are strongly exchange coupled. Alternatively, MAG2 may be a “write assist” layer, for example a high-saturation magnetization, magnetically soft material in an exchange-spring structure, with IL1 being very thin so that IL2 functions as the coupling layer between MAG1 and the write-assist MAG2 layer. In an application for thermally-assisted recording (TAR), MAG2 may be the chemically-ordered equiatomic binary alloy FePt or CoPt based on the L10 phase, with high magneto-crystalline anisotropy (Ku).
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: November 27, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Ernesto E. Marinero, Dieter K. Weller, Brian R. York
  • Patent number: 8213131
    Abstract: A system in one embodiment includes a magnetic sensor having a free magnetic layer, a nanocrystalline seed layer formed on an insulative amorphous material; a chromium-containing underlayer formed on the seed layer; and a hard bias layer formed on the underlayer and separated from the sensor by the insulative amorphous material. A method according to a further embodiment includes forming an amorphous insulative layer encapsulating a sensor stack; forming a nanocrystalline seed layer on the amorphous insulative material; forming a chromium-containing underlayer on the seed layer; and forming a hard bias layer on the underlayer. Additional systems and methods are presented.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: July 3, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Yongjian Sun, Brian R. York
  • Publication number: 20120164486
    Abstract: A method and apparatus for a high-moment magnetic material used in a write head deposited on a gap layer that was grown using a nickel-chromium seed layer. The nickel-chromium seed layer provides the correct crystallographic orientation for both the nonmagnetic gap layer and the high-moment magnetic material such that the high-moment magnetic material has soft-magnetic properties and is useful as either a main pole or as shield layer in a write head. Moreover, the nickel-chronium seed layer, which may be exposed on the air bearing surface (ABS) of the write head, has an etch rate similar to other metals found in the ABS, thereby avoiding pole tip protrusion during later processing.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 28, 2012
    Inventors: Christian René Bonhôte, Stefan Maat, Ning Shi, Brian R. York
  • Patent number: 8107202
    Abstract: A magnetoresistive sensor having an antiparallel coupled pinned layer structure including an AP1 layer and an AP2 layer. The AP2 layer includes two ferromagnetic layers AP2(a) and AP2(b), and a separation layer sandwiched therebetween. The AP2(a) layer is significantly larger than the AP2(b) layer, which results in strong pinning, while the separation layer provides increased TMR and reduced RA.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: January 31, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Wen-yaung Lee, Chang Man Park, Brian R. York, Alexander M. Zeltser
  • Patent number: 7855861
    Abstract: A hard disk drive slider comprises an overcoat layer, which covers an air-bearing surface of the slider. The overcoat covers an exposed surface of a tunneling magnetoresistance transducer. An adhesion layer is coupled with the overcoat layer and the air-bearing surface. The adhesion layer comprises a compound of nitrogen. The compound of nitrogen reduces noise in read data from the tunneling magnetoresistance transducer.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: December 21, 2010
    Assignee: Hitachi Global Storage Technologies, Netherlands, B.V.
    Inventors: Peter M. Dang, Eric W. Flint, Daryl J. Pocker, Yongjian Sun, Jila Tabib, Brian R. York
  • Patent number: 7833640
    Abstract: An improved structure for the construction of perpendicular recording media is disclosed. The structure includes a tri-layer IML resident between a soft under layer CoTaZr film and a CoPtCr—SiO2 magnetic media. In an embodiment, the tri-layer comprises a RuxCr1?x layer over dual nucleation layers of Ni—Fe and Ni—Fe—Cr. The tri-layer replaces the typical Ru and Ni—Fe intermediate layers of the prior art, resulting in considerable improvement in lattice matching between the Ru containing intermediate layer and the CoPtCr—SiO2 magnetic media, further resulting in improved magnetic media performance.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: November 16, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Ernesto E. Marinero, Natacha Frederique Supper, Brian R. York
  • Patent number: 7722967
    Abstract: A perpendicular recording medium having an underlayer structure that improves the microstructural properties of the recording layer. A spacer layer is intercalated between the lower and upper hcp metal layers. This results in improvements in microstructure of the upper hcp metal layer and the recording magnetic layer, which in turn results in gains in recording media performance. Further, the thickness of the upper hcp metal layer can be reduced, thereby reducing the distance between the recording layer and the soft underlayer, providing further gains in recording media performance.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: May 25, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Ernesto E. Marinero, Brian R. York
  • Patent number: 7703194
    Abstract: A method for creating a write element of a magnetic head according to one embodiment includes forming a first pole pedestal; forming a write gap layer above the first pole pedestal; forming a second pole pedestal above the write gap layer; and forming at least one of: a cap layer of CoFeON between the first pole pedestal and the write gap, and a seed layer of CoFeON between the write gap layer and the second pole pedestal. Note that other layers may be interspersed between those set forth here.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: April 27, 2010
    Assignee: International Business Machines Corporation
    Inventors: Brian E. Brusca, Joel S. Forrest, Richard Hsiao, James D. Jarratt, Brian R. York
  • Patent number: 7675717
    Abstract: A magnetic head of either CIP or CPP configuration is disclosed, having a read sensor with a strongly pinned ferromagnetic layer due to increased electronic exchange with the AFM layer. The read sensor includes a lower seed layer whose material is chosen from a group consisting of Ta, NiFeCr, NiFeCoCr, NiFe, Cu, Ta/NiFeCr, Ta/NiFeCr/NiFe, Ta/Ru and Ta/NiFeCoCr, and an upper seed layer where the upper seed layer material is chosen from a group consisting of Ru, Cu, NiFe, Cu(x)Au(1?x)(x=0.22-0.5) alloys, Ru(x)Cr(1?x)(x=0.1-0.5) alloys, NiFeCr and NiFeCoCr. An AFM layer is formed on the upper seed layer and a ferromagnetic pinned layer is formed on the AFM layer. The exchange coupling energy Jk between the AFM layer and pinned layers exceeds 1.3 erg/cm2. Also disclosed is a method of fabrication of a magnetic head including a read head sensor with a strongly pinned ferromagnetic layer due to increased electronic exchange.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: March 9, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Wen-Yaung Lee, Jinshan Li, Daniele Mauri, Brian R. York
  • Patent number: 7672094
    Abstract: A tunnel junction TMR magnetoresistive sensor formed on layers having nitrogen interspersed therein. The nitrogenation of the layers on which the sensor is deposited allows the sensor layers to have very smooth, uniform surfaces. This greatly improves sensor performance by, for example, providing a very uniform barrier layer thickness.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: March 2, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas E. Shatz, Dulip Ajantha Welipitiya, Brian R. York
  • Publication number: 20100002336
    Abstract: A system in one embodiment includes a magnetic sensor having a free magnetic layer, a nanocrystalline seed layer formed on an insulative amorphous material; a chromium-containing underlayer formed on the seed layer; and a hard bias layer formed on the underlayer and separated from the sensor by the insulative amorphous material. A method according to a further embodiment includes forming an amorphous insulative layer encapsulating a sensor stack; forming a nanocrystalline seed layer on the amorphous insulative material; forming a chromium-containing underlayer on the seed layer; and forming a hard bias layer on the underlayer. Additional systems and methods are presented.
    Type: Application
    Filed: July 1, 2008
    Publication date: January 7, 2010
    Inventors: Yongjian Sun, Brian R. York
  • Publication number: 20090257152
    Abstract: A magnetoresistive sensor having an antiparallel coupled pinned layer structure including an AP1 layer and an AP2 layer. The AP2 layer includes two ferromagnetic layers AP2(a) and AP2(b), and a separation layer sandwiched therebetween. The AP2(a) layer is significantly larger than the AP2(b) layer, which results in strong pinning, while the separation layer provides increased TMR and reduced RA.
    Type: Application
    Filed: December 30, 2008
    Publication date: October 15, 2009
    Inventors: Wen-yaung Lee, Chang Man Park, Brian R. York, Alexander M. Zeltser
  • Patent number: 7573685
    Abstract: A magnetoresistive sensor having a Ta cap layer with nitrogen added in situ during deposition. The nitrogen in the cap layer can be formed by depositing a Ta cap layer in a sputter deposition chamber having a small amount of nitrogen in an Ar atmosphere. The resulting nitrogenated cap layer exhibits reduced specular scattering, which results in improved magnetic performance of the magnetoresistive sensor.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: August 11, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Wen-yaung Lee, Thomas E. Shatz, Dulip Ajantha Welipitiya, Brian R. York
  • Publication number: 20080266719
    Abstract: A hard disk drive slider comprises a tunneling magnetoresistance transducer, which comprises an insulator barrier. A nitrogen atom from a nitrogen atmosphere occupies an oxygen atom vacancy within the insulator barrier, such that noise in read data from the tunneling magnetoresistance transducer is reduced.
    Type: Application
    Filed: April 30, 2007
    Publication date: October 30, 2008
    Inventors: Peter M. Dang, Eric W. Flint, Daryl J. Pocker, Yongjian Sun, Jila Tabib, Brian R. York
  • Publication number: 20080266725
    Abstract: A tunnel junction TMR magnetoresistive sensor formed on layers having nitrogen interspersed therein. The nitrogenation of the layers on which the sensor is deposited allows the sensor layers to have very smooth, uniform surfaces. This greatly improves sensor performance by, for example, providing a very uniform barrier layer thickness.
    Type: Application
    Filed: May 23, 2008
    Publication date: October 30, 2008
    Inventors: Thomas E. Shatz, Dulip Ajantha Welipitiya, Brian R. York
  • Patent number: 7433162
    Abstract: An antiferromagnetically exchange-coupled structure for use in a magnetic device, such as a magnetoresistive sensor, includes an enhancement layer formed of a chemically-ordered tetragonal-crystalline alloy, a chemically-ordered tetragonal-crystalline Mn-alloy antiferromagnetic layer in contact with the enhancement layer, and a ferromagnetic layer exchange-coupled with the antiferromagnetic layer. The enhancement layer is an alloy selected from the group consisting of alloys of AuCu, FePt, FePd, AgTi3, Pt Zn, PdZn, IrV, CoPt and PdCd, and the antiferromagnetic layer is an alloy of Mn with Pt, Ni, Ir, Pd or Rh. The enhancement layer enhances the transformation of the Mn alloy from the chemically-disordered phase to the chemically-ordered phase.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: October 7, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Matthew J. Carey, Brian R. York
  • Publication number: 20080137236
    Abstract: A magnetic head of either CIP or CPP configuration is disclosed, having a read sensor with a strongly pinned ferromagnetic layer due to increased electronic exchange with the AFM layer. The read sensor includes a lower seed layer whose material is chosen from a group consisting of Ta, NiFeCr, NiFeCoCr, NiFe, Cu, Ta/NiFeCr, Ta/NiFeCr/NiFe, Ta/Ru and Ta/NiFeCoCr, and an upper seed layer where the upper seed layer material is chosen from a group consisting of Ru, Cu, NiFe, Cu(x)Au(1-x)(x=0.22-0.5) alloys, Ru(x)Cr(1-x)(x=0.1-0.5) alloys, NiFeCr and NiFeCoCr. An AFM layer is formed on the upper seed layer and a ferromagnetic pinned layer is formed on the AFM layer. The exchange coupling energy Jk between the AFM layer and pinned layers exceeds 1.3 erg/cm2. Also disclosed is a method of fabrication of a magnetic head including a read head sensor with a strongly pinned ferromagnetic layer due to increased electronic exchange.
    Type: Application
    Filed: December 12, 2006
    Publication date: June 12, 2008
    Inventors: Wen-Yaung Lee, Jinshan Li, Daniele Mauri, Brian R. York