Patents by Inventor Brian S. Tryon

Brian S. Tryon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240142684
    Abstract: An electronic device such as a wristwatch may be provided with conductive structures. The conductive structures may include a sensor electrode for an electrocardiogram (ECG) sensor. A coating may be disposed on the sensor electrode to reflect particular wavelengths of visible light so that the sensor electrode exhibits a desired color. The coating may include adhesion and transition layers on the sensor electrode, an opaque coloring layer on the adhesion and transition layers, and a thin-film interference filter on the opaque coloring layer. The thin-film interference filter may have an uppermost diamond-like carbon (DLC) layer. The DLC layer may contribute to the color response of the coating while concurrently minimizing noise in ECG waveforms gathered by the ECG sensor using the sensor electrode.
    Type: Application
    Filed: October 13, 2023
    Publication date: May 2, 2024
    Inventors: Bin Fan, Brian S. Tryon, Xiaofan Niu, Chia-Yeh Lee, Frank C. Sit, Hien Minh H Le, Justin S. Shi, Shinjita Acharya, Ziqing Duan
  • Publication number: 20240076504
    Abstract: An electronic device may be provided with conductive structures such as conductive housing structures. A visible-light-reflecting coating may be formed on the conductive structures. The coating may have adhesion and transition layers, an opaque coloring layer on the adhesion and transition layers, and a three-layer thin-film interference filter on the opaque coloring layer. The three-layer thin-film interference filter may have an uppermost SiC layer, a lowermost SiCrCN layer, and a CrC layer interposed between the SiC layer and the SiCrCN layer. The opaque color layer may be a CrSiCN layer. The coating may exhibit a light violet color that has a relatively uniform visual response even when the underlying conductive structures have a three-dimensional shape.
    Type: Application
    Filed: August 3, 2023
    Publication date: March 7, 2024
    Inventors: Lijie Bao, Brian S. Tryon, Jozef M. Matlak, Shinjita Acharya
  • Patent number: 11910552
    Abstract: An electronic device may have a housing. The device may include metal structures such as a metal member forming a portion of the housing, a portion of a strap, or other portions of the device. A gold-containing coating such as a layer of elemental gold or a gold alloy may cover the metal member to provide the metal member with a gold appearance or other desired appearance. To protect the metal member and the gold-containing coating, the metal member and gold-containing coating may be covered with a protective coating layer such as an organic protective layer. The organic protective layer may have a fluoropolymer layer with thiol coupling groups to promote adhesion to the gold-containing layer or may contain a polymer layer with silane and thiol coupling groups that serves as an adhesion promotion layer for an overlapping fluoropolymer layer with silane coupling groups.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: February 20, 2024
    Assignee: Apple Inc.
    Inventors: Manish Mittal, Brian S. Tryon, James A. Yurko, Jing Zhou, Matthew S. Rogers, Naoto Matsuyuki
  • Patent number: 11739425
    Abstract: An electronic device may include conductive structures having a visible-light-reflecting coating. The coating may include a seed layer, transition layers, a neutral-color base layer, and an uppermost layer that forms a single-layer interference film. The neutral-color base layer may be opaque to visible light. The interference film may include silicon and may have an absorption coefficient between 0 and 1. The interference film may include, for example, CrSiN or CrSiCN. The composition of the interference film, the thickness of the interference film, and/or the composition of the base layer may be selected to provide the coating with a desired color near the middle of the visible spectrum (e.g., at green wavelengths). The color may be relatively stable even if the thickness of the coating varies across its area.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: August 29, 2023
    Assignee: Apple Inc.
    Inventors: Brian S. Tryon, Lijie Bao, Martin Melcher, Sonja R. Postak
  • Patent number: 11719865
    Abstract: An electronic device may include conductive structures having a visible-light-reflecting coating. The coating may include a seed layer, transition layers, a neutral-color base layer, and an uppermost layer that forms a single-layer interference film. The neutral-color base layer may be opaque to visible light. The interference film may include silicon and may have an absorption coefficient between 0 and 1. The interference film may include, for example, CrSiCN or CrSiC. The composition of the interference film, the thickness of the interference film, and/or the composition of the base layer may be selected to provide the coating with a desired color in the visible spectrum (e.g., at blue or purple wavelengths). The color may be relatively stable even if the thickness of the coating varies across its area.
    Type: Grant
    Filed: February 16, 2021
    Date of Patent: August 8, 2023
    Assignee: Apple Inc.
    Inventors: Brian S. Tryon, Lijie Bao, Martin Melcher, Sonja R. Postak
  • Publication number: 20230244018
    Abstract: An electronic device may be provided with conductive structures such as conductive housing structures. A visible-light-reflecting coating may be formed on the conductive structures. The coating may have adhesion and transition layers and a multi-layer thin-film interference filter on the adhesion and transition layers. The multi-layer thin-film interference filter may have an uppermost SiCrN layer, a lowermost TiN layer, and a set of SiN layers interleaved with a set of SiH layers. The coating may exhibit an orange, yellow, or red color that has a relatively uniform visual response at different viewing angles even when the underlying conductive structures have a three-dimensional shape.
    Type: Application
    Filed: January 19, 2023
    Publication date: August 3, 2023
    Inventors: Brian S Tryon, Naoto Matsuyuki, Shuichi Shimada, Bin Fan, Hyuga Taniguchi
  • Publication number: 20230046594
    Abstract: A coating-substrate combination includes: a Ni-based superalloy substrate comprising, by weight percent: 2.0-5.1 Cr; 0.9-3.3 Mo; 3.9-9.8 W; 2.2-6.8 Ta; 5.4-6.5 Al; 1.8-12.8 Co; 2.8-5.8 Re; 2.8-7.2 Ru; and a coating comprising, exclusive of Pt group elements, by weight percent: Ni as a largest content; 5.8-9.3 Al; 4.4-25 Cr; 3.0-13.5 Co; up to 6.0 Ta, if any; up to 6.2 W, if any; up to 2.4 Mo, if any; 0.3-0.6 Hf; 0.1-0.4 Si; up to 0.6 Y, if any; up to 0.4 Zr, if any; up to 1.0 Re, if any.
    Type: Application
    Filed: November 1, 2022
    Publication date: February 16, 2023
    Applicant: Pratt & Whitney Canada Corp.
    Inventors: Joel Larose, Alan D. Cetel, David A. Litton, Brian S. Tryon
  • Patent number: 11518143
    Abstract: A coating-substrate combination includes: a Ni-based superalloy substrate comprising, by weight percent: 2.0-5.1 Cr; 0.9-3.3 Mo; 3.9-9.8 W; 2.2-6.8 Ta; 5.4-6.5 Al; 1.8-12.8 Co; 2.8-5.8 Re; 2.8-7.2 Ru; and a coating comprising, exclusive of Pt group elements, by weight percent: Ni as a largest content; 5.8-9.3 Al; 4.4-25 Cr; 3.0-13.5 Co; up to 6.0 Ta, if any; up to 6.2 W, if any; up to 2.4 Mo, if any; 0.3-0.6 Hf; 0.1-0.4 Si; up to 0.6 Y, if any; up to 0.4 Zr, if any; up to 1.0 Re, if any.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: December 6, 2022
    Assignee: Pratt & Whitney Canada Corp.
    Inventors: Joel Larose, Alan D. Cetel, David A. Litton, Brian S. Tryon
  • Publication number: 20220350062
    Abstract: An electronic device may include conductive structures with a light-reflecting coating. The coating may have a two or four-layer thin-film interference filter. The two-layer filter may have a CrN layer and an SiCrN layer. The four-layer filter may have two CrN layers and two SiCrN layers. The two-layer filter may be used to coat relatively small conductive components. The four-layer filter may be used to coat a conductive housing sidewall. Both types of interference filter may produce a relatively uniform light blue color despite variations in coating thickness produced on account of the geometry of the underlying conductive structure.
    Type: Application
    Filed: August 27, 2021
    Publication date: November 3, 2022
    Inventors: Lijie Bao, Jiayun Liu, Fei Tong, Jozef M. Matlak, Sonja R. Postak, Brian S. Tryon
  • Patent number: 11268188
    Abstract: A method of forming a surface coating on a component of an electronic device can include depositing an aluminum layer including at least about 0.05 weight percent (wt %) of a grain refiner on a surface of the component by a physical vapor deposition process, and anodizing the aluminum layer to form an anodized aluminum oxide layer having a L* value greater than about 85 in the CIELAB color space.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: March 8, 2022
    Assignee: Apple Inc.
    Inventors: Brian S. Tryon, Alexander W. Williams, James A. Curran, Sonja R. Postak
  • Publication number: 20220066397
    Abstract: An electronic device may include conductive structures such as conductive housing structures. A high-brightness, visible-light-reflecting coating may be formed on the conductive structures. The coating may have adhesion and transition layers and an uppermost coloring layer on the adhesion and transition layers. At least the uppermost coloring layer may be deposited using a high impulse magnetron sputtering (HiPIMS) process. The uppermost coloring layer may include a TiCrN film, a TiCrCN film, a TiCN film, or a metal nitride film that contains Ti, Zr, Hf, or Cr. The coating may exhibit a high-brightness gold color.
    Type: Application
    Filed: August 19, 2021
    Publication date: March 3, 2022
    Inventors: Jozef M. Matlak, Brian S. Tryon, Lijie Bao, Maruwada Sukanya Sharma, Shiva K. Mandepudi, Sonja R. Postak
  • Publication number: 20210400830
    Abstract: An electronic device may have a housing. The device may include metal structures such as a metal member forming a portion of the housing, a portion of a strap, or other portions of the device. A gold-containing coating such as a layer of elemental gold or a gold alloy may cover the metal member to provide the metal member with a gold appearance or other desired appearance. To protect the metal member and the gold-containing coating, the metal member and gold-containing coating may be covered with a protective coating layer such as an organic protective layer. The organic protective layer may have a fluoropolymer layer with thiol coupling groups to promote adhesion to the gold-containing layer or may contain a polymer layer with silane and thiol coupling groups that serves as an adhesion promotion layer for an overlapping fluoropolymer layer with silane coupling groups.
    Type: Application
    Filed: June 17, 2020
    Publication date: December 23, 2021
    Inventors: Manish Mittal, Brian S. Tryon, James A. Yurko, Jing Zhou, Matthew S. Rogers, Naoto Matsuyuki
  • Publication number: 20210388507
    Abstract: An electronic device such as a wristwatch may include a conductive housing. A corrosion-resistant coating may be deposited on the conductive housing. The coating may include transition layers and an uppermost alloy layer. The transition layers may include a chromium seed layer on the conductive housing and a chromium nitride layer on the chromium seed layer. The uppermost alloy layer may include TiCrCN or other alloys and may provide the coating with desired optical reflection and absorption characteristics. The transition layers may include a minimal number of coating defects, thereby eliminating potential sites at which visible defects could form when exposed to salt water. This may allow the electronic device to exhibit a desired color and to be submerged in salt water without producing undesirable visible defects on the conductive housing structures.
    Type: Application
    Filed: August 30, 2021
    Publication date: December 16, 2021
    Inventors: Brian S. Tryon, Isabel Yang, Todd Mintz, Jeremy Li, Brian Gable, Lijie Bao, Yi Chen, Christopher D. Prest, James Yurko
  • Patent number: 11136672
    Abstract: An electronic device such as a wristwatch may include a conductive housing. A corrosion-resistant coating may be deposited on the conductive housing. The coating may include transition layers and an uppermost alloy layer. The transition layers may include a chromium seed layer on the conductive housing and a chromium nitride layer on the chromium seed layer. The uppermost alloy layer may include TiCrCN or other alloys and may provide the coating with desired optical reflection and absorption characteristics. The transition layers may include a minimal number of coating defects, thereby eliminating potential sites at which visible defects could form when exposed to salt water. This may allow the electronic device to exhibit a desired color and to be submerged in salt water without producing undesirable visible defects on the conductive housing structures.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: October 5, 2021
    Assignee: Apple Inc.
    Inventors: Brian S. Tryon, Isabel Yang, Todd Mintz, Jeremy Li, Brian Gable, Lijie Bao, Yi Chen, Christopher D. Prest, James Yurko
  • Publication number: 20210286112
    Abstract: An electronic device may include conductive structures having a visible-light-reflecting coating. The coating may include a seed layer, transition layers, a neutral-color base layer, and an uppermost layer that forms a single-layer interference film. The neutral-color base layer may be opaque to visible light. The interference film may include silicon and may have an absorption coefficient between 0 and 1. The interference film may include, for example, CrSiCN or CrSiC. The composition of the interference film, the thickness of the interference film, and/or the composition of the base layer may be selected to provide the coating with a desired color in the visible spectrum (e.g., at blue or purple wavelengths). The color may be relatively stable even if the thickness of the coating varies across its area.
    Type: Application
    Filed: February 16, 2021
    Publication date: September 16, 2021
    Inventors: Brian S. Tryon, Lijie Bao, Martin Melcher, Sonja R. Postak
  • Patent number: 10941503
    Abstract: The embodiments described herein relate to forming anodized films that have a white appearance. In some embodiments, an anodized film having pores with light diffusing pore walls created by varying the current density during an anodizing process is described. In some embodiments, an anodized film having light diffusing micro-cracks created by a laser cracking procedure is described. In some embodiments, a sputtered layer of light diffusing aluminum is provided below an anodized film. In some embodiments, light diffusing particles are infused within openings of an anodized layer.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: March 9, 2021
    Assignee: APPLE INC.
    Inventors: Lucy E. Browning, Stephen B. Lynch, Christopher D. Prest, Peter N. Russell-Clarke, Masashige Tatebe, Michael S. Nashner, Daniel T. McDonald, Brian S. Tryon, Jody R. Akana
  • Publication number: 20210048565
    Abstract: An electronic device may include conductive structures having a visible-light-reflecting coating. The coating may include a seed layer, transition layers, a neutral-color base layer, and an uppermost layer that forms a single-layer interference film. The neutral-color base layer may be opaque to visible light. The interference film may include silicon and may have an absorption coefficient between 0 and 1. The interference film may include, for example, CrSiN or CrSiCN. The composition of the interference film, the thickness of the interference film, and/or the composition of the base layer may be selected to provide the coating with a desired color near the middle of the visible spectrum (e.g., at green wavelengths). The color may be relatively stable even if the thickness of the coating varies across its area.
    Type: Application
    Filed: July 17, 2020
    Publication date: February 18, 2021
    Inventors: Brian S. Tryon, Lijie Bao, Martin Melcher, Sonja R. Postak
  • Publication number: 20210001603
    Abstract: A coating-substrate combination includes: a Ni-based superalloy substrate comprising, by weight percent: 2.0-5.1 Cr; 0.9-3.3 Mo; 3.9-9.8 W; 2.2-6.8 Ta; 5.4-6.5 Al; 1.8-12.8 Co; 2.8-5.8 Re; 2.8-7.2 Ru; and a coating comprising, exclusive of Pt group elements, by weight percent: Ni as a largest content; 5.8-9.3 Al; 4.4-25 Cr; 3.0-13.5 Co; up to 6.0 Ta, if any; up to 6.2 W, if any; up to 2.4 Mo, if any; 0.3-0.6 Hf; 0.1-0.4 Si; up to 0.6 Y, if any; up to 0.4 Zr, if any; up to 1.0 Re, if any.
    Type: Application
    Filed: September 23, 2020
    Publication date: January 7, 2021
    Applicant: Pratt & Whitney Canada Corp.
    Inventors: Joel Larose, Alan D. Cetel, David A. Litton, Brian S. Tryon
  • Patent number: 10859267
    Abstract: An oxidation resistant coating system for a turbine engine component includes a cathodic arc coating applied to a surface of the engine component, a thin APS metallic coating applied to a surface of the cathodic arc coating, and a ceramic top coating applied to a surface of the thin APS metallic coating to improve lifetime of the engine components.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: December 8, 2020
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Brian S. Tryon, Alexander W. Williams, Stephen K. Kramer, Kevin W. Schlichting, Jessica L. Serra
  • Publication number: 20200347492
    Abstract: A method of forming a surface coating on a component of an electronic device can include depositing an aluminum layer including at least about 0.05 weight percent (wt %) of a grain refiner on a surface of the component by a physical vapor deposition process, and anodizing the aluminum layer to form an anodized aluminum oxide layer having a L* value greater than about 85 in the CIELAB color space.
    Type: Application
    Filed: July 23, 2019
    Publication date: November 5, 2020
    Inventors: Brian S. Tryon, Alexander W. Williams, James A. Curran, Sonja R. Postak