Patents by Inventor Brian S. Tryon

Brian S. Tryon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110244138
    Abstract: A disclosed process for coating a turbine vane includes the steps of applying a coating to line of sight surfaces with a thermal spraying process and applying a slurry coating to non-line of sight surfaces to provide oxidative protection and desired thermal protection. Moreover, the applied coating on both the line of sight and non-line of sight surfaces provides a bond layer for the application of a ceramic coating.
    Type: Application
    Filed: March 30, 2010
    Publication date: October 6, 2011
    Inventors: Kevin W. Schlichting, Brian S. Tryon
  • Publication number: 20110033284
    Abstract: A coated article includes an article having at least one surface and a thermal barrier coating system disposed upon the at least one surface. The thermal barrier coating system has at least two layers, with each layer having a different microstructure. The microstructure of each layer may be any one of the following: columnar, amorphous, randomized, and splat-like. The thermal barrier coating system typically exhibits a thermal conductivity of no more than 16 BTU in/hr ft2 F.
    Type: Application
    Filed: August 4, 2009
    Publication date: February 10, 2011
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Brian S. Tryon, Kevin W. Schlichting, Melvin Freling, David A. Litton
  • Publication number: 20100297472
    Abstract: A metallic coating for protecting a substrate from high temperature oxidation and hot corrosion environments comprising about 2.5 to about 13.5 wt. % cobalt, about 12 to about 27 wt. % chromium, about 5 to about 7 wt. % aluminum, about 0.0 to about 1.0 wt. % yttrium, about 0.0 to about 1.0 wt. % hafnium, about 1.0 to about 3.0 wt. % silicon, about 0.0 to about 4.5 wt. % tantalum, about 0.0 to about 6.5 wt. % tungsten, about 0.0 to about 2.0 wt. % rhenium, about 0.0 to about 1.0 wt. % molybdenum and the balance nickel.
    Type: Application
    Filed: May 22, 2009
    Publication date: November 25, 2010
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Michael Minor, Paul M. Pellet, Michael L. Miller, Brian S. Tryon
  • Publication number: 20100196728
    Abstract: A process for improving the adherence of a thermal barrier coating to a substrate includes the steps of providing a substrate, depositing a masking layer of aluminum, an aluminum alloy, or titanium alloy, or titanium on a surface of the substrate, depositing a non-thermally grown oxide layer of alumina or titania on the masking layer, and depositing a thermal barrier coating on the oxide layer.
    Type: Application
    Filed: January 30, 2009
    Publication date: August 5, 2010
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Brian S. Tryon, Joseph Parkos
  • Publication number: 20100009092
    Abstract: The present disclosure relates to an improved low-cost metallic coating to be deposited on gas turbine engine components. The metallic coating consists of 1.0 to 18 wt % cobalt, 3.0 to 18 wt % chromium, 5.0 to 15 wt % aluminum, 0.01 to wt % yttrium, 0.01 to 0.6 wt % hafnium, 0.0 to 0.3 wt % silicon, 0.0 to 1.0 wt % zirconium, 0.0 to 10 wt % tantalum, 0.0 to 9.0 wt % tungsten, 0.0 to 10 wt % molybdenum, 0.0 to 43.0 wt % platinum, and the balance nickel.
    Type: Application
    Filed: July 8, 2008
    Publication date: January 14, 2010
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Brian S. Tryon, David A. Litton, Russell A. Beers
  • Publication number: 20090258165
    Abstract: A process for coating a part comprises the steps of providing a chamber which is electrically connected as an anode, placing the part to be coated in the chamber, providing a cathode formed from a coating material to be deposited and platinum, and applying a current to the anode and the cathode to deposit the coating material and the platinum on the part.
    Type: Application
    Filed: April 14, 2008
    Publication date: October 15, 2009
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Brian S. Tryon, Michael J. Maloney, David A. Litton
  • Publication number: 20090191422
    Abstract: A method for coating a metal component of a gas turbine engine, the method comprising forming a cathode ingot for a cathodic arc deposition process, and performing a cathodic arc deposition process on the metal component with the cathode ingot to form a bond coat, where the formed cathode ingot comprises an MCrAlY alloy base portion and a platinum-modified aluminide outer coating disposed over the base portion.
    Type: Application
    Filed: January 30, 2008
    Publication date: July 30, 2009
    Applicant: United Technologies Corporation
    Inventors: Brian S. Tryon, Michael Dileo, Russell A. Beers
  • Publication number: 20090075115
    Abstract: A thermal barrier coating system includes a substrate, a first transition metal layer on the substrate, a bond coat on the first transition metal layer, an optional second transition metal layer on the bond coat, and an optional ceramic topcoat on the second transition metal layer. In embodiments, the first transition metal layer and the second transition metal layer include platinum to resist reaction between the bond coat and the substrate and to slow oxidation of the bond coat.
    Type: Application
    Filed: April 30, 2007
    Publication date: March 19, 2009
    Inventors: Brian S. Tryon, Michael J. Maloney
  • Publication number: 20090045045
    Abstract: A puck for providing a coating material in a cathodic arc coating system has a generally uniform depression formed at the outer periphery. The depression ensures that an arc from the coating apparatus will move uniformly about the outer periphery of the puck, such that a coating cloud will also be uniformly applied to parts to be coated.
    Type: Application
    Filed: August 14, 2007
    Publication date: February 19, 2009
    Inventors: Brian S. Tryon, Michael C. Swift, Michael Dileo
  • Publication number: 20090035601
    Abstract: A protective coating system includes a nickel-aluminum-zirconium alloy coating having at least one phase selected from gamma phase nickel, gamma prime phase nickel-aluminum, or beta phase nickel-aluminum in combination with the gamma phase nickel or the gamma prime phase nickel-aluminum. For example, the nickel-aluminum-zirconium alloy coating includes about 0.001 wt % to 0.2 wt % zirconium.
    Type: Application
    Filed: August 5, 2007
    Publication date: February 5, 2009
    Inventors: David A. Litton, Venkatarama K. Seetharaman, Michael J. Maloney, Benjamin J. Zimmerman, Brian S. Tryon