Patents by Inventor Brian Samuel Beaman

Brian Samuel Beaman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100045317
    Abstract: The present invention is directed to a high density test probe which provides a means for testing a high density and high performance integrated circuits in wafer form or as discrete chips. The test probe is formed from a dense array of elongated electrical conductors which are embedded in an compliant or high modulus elastomeric material. A standard packaging substrate, such as a ceramic integrated circuit chip packaging substrate is used to provide a space transformer. Wires are bonded to an array of contact pads on the surface of the space transformer. The space transformer formed from a multilayer integrated circuit chip packaging substrate. The wires are as dense as the contact location array. A mold is disposed surrounding the array of outwardly projecting wires. A liquid elastomer is disposed in the mold to fill the spaces between the wires.
    Type: Application
    Filed: August 27, 2009
    Publication date: February 25, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Maurice Heathcote Norcott, Da-Yuan Shih, George Frederick Walker
  • Publication number: 20090315579
    Abstract: The present invention is directed to a high density test probe which provides a means for testing a high density and high performance integrated circuits in wafer form or as discrete chips. The test probe is formed from a dense array of elongated electrical conductors which are embedded in an compliant or high modulus elastomeric material. A standard packaging substrate, such as a ceramic integrated circuit chip packaging substrate is used to provide a space transformer. Wires are bonded to an array of contact pads on the surface of the space transformer. The space transformer formed from a multilayer integrated circuit chip packaging substrate. The wires are as dense as the contact location array. A mold is disposed surrounding the array of outwardly projecting wires. A liquid elastomer is disposed in the mold to fill the spaces between the wires.
    Type: Application
    Filed: August 27, 2009
    Publication date: December 24, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Maurice Heathcote Norcott, Da-Yuan Shih, George Frederick Walker
  • Publication number: 20090308756
    Abstract: The present invention is directed to structures having a plurality of discrete insulated elongated electrical conductors projecting from a support surface which are useful as probes for testing of electrical interconnections to electronic devices, such as integrated circuit devices and other electronic components and particularly for testing of integrated circuit devices with rigid interconnection pads and multi-chip module packages with high density interconnection pads and the apparatus for use thereof and to methods of fabrication thereof. Coaxial probe structures are fabricated by the methods described providing a high density coaxial probe.
    Type: Application
    Filed: August 21, 2009
    Publication date: December 17, 2009
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Yun-Hsin Liao, Daniel Peter Morris, Da-Yuan Shih
  • Patent number: 7632127
    Abstract: The illustrative embodiments provide a socket, a method for manufacturing the socket, a device, and a method for compensating for differing coefficients of thermal expansion between a socket and a printed circuit board. The socket includes surface mounted contacts and an elongated housing. The elongated housing comprises at least two members that are coupled together and disposed to form an aperture in between the at least two members, wherein the surface mounted contacts extend from the aperture, and wherein at least one dimension of the at least two members is selected to compensate for a difference between the coefficients of thermal expansion between the socket and a printed circuit board.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: December 15, 2009
    Assignee: International Business Machines Corporation
    Inventors: Brian Samuel Beaman, Joseph Kuczynski, Theron Lee Lewis, Amanda Elisa Ennis Mikhail, Arvind Kumar Sinha
  • Publication number: 20090189288
    Abstract: A method is described having the steps of providing a surface having a plurality of wire bondable locations; wire bonding a wire to each of the wire bondable locations using a wire capillary tool; controlling the position of the capillary tool with respect to the substrate; after forming a wire bond of the wire to the wire bondable location moving the capillary tool relative to the surface as the capillary tool is moved away from the surface to form a wire having a predetermined shape.
    Type: Application
    Filed: January 22, 2009
    Publication date: July 30, 2009
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Da-Yuan Shih
  • Patent number: 7538565
    Abstract: A high density test probe which provides an apparatus for testing a high density and high performance integrated circuits in wafer form or as discrete chips. The test probe is formed from a dense array of elongated electrical conductors which are embedded in an compliant or high modulus elastomeric material. A standard packaging substrate, such as a ceramic integrated circuit chip packaging substrate is used to provide a space transformer. Wires are bonded to an array of contact pads on the surface of the space transformer. The space transformer formed from a multilayer integrated circuit chip packaging substrate. The wires are as dense as the contact location array. A mold is disposed surrounding the array of outwardly projecting wires. A liquid elastomer is disposed in the mold to fill the spaces between the wires. The elastomer is cured and the mold is removed, leaving an array of wires disposed in the elastomer and in electrical contact with the space transformer.
    Type: Grant
    Filed: August 25, 1999
    Date of Patent: May 26, 2009
    Assignee: International Business Machines Corporation
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Maurice Heathcote Norcott, Da-Yuan Shih, George Frederick Walker
  • Publication number: 20090128176
    Abstract: The present invention is directed to a high density test probe which provides a means for testing a high density and high performance integrated circuits in wafer form or as discrete chips. The test probe is formed from a dense array of elongated electrical conductors which are embedded in an compliant or high modulus elastomeric material. A standard packaging substrate, such as a ceramic integrated circuit chip packaging substrate is used to provide a space transformer. Wires are bonded to an array of contact pads on the surface of the space transformer. The space transformer formed from a multilayer integrated circuit chip packaging substrate. The wires are as dense as the contact location array. A mold is disposed surrounding the array of outwardly projecting wires. A liquid elastomer is disposed in the mold to fill the spaces between the wires.
    Type: Application
    Filed: January 22, 2009
    Publication date: May 21, 2009
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Maurice Heathcote Norcott, Da-Yuan Shin, George Frederick Walker
  • Patent number: 7530853
    Abstract: The illustrative embodiments provide a socket, a method for manufacturing the socket, a device, and a method for compensating for a difference in the coefficients of thermal expansion between a socket and a printed circuit board. The socket includes surface mounted contacts and an elongated housing. The elongated housing comprises an aperture, wherein the surface mounted contacts extend from the aperture. At least one plate connects to the elongated housing, wherein the at least one plate has a coefficient of thermal expansion selected to compensate for a difference in coefficients of thermal expansion between the socket and a printed circuit board.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: May 12, 2009
    Assignee: International Business Machines Corporation
    Inventors: Brian Samuel Beaman, Joseph Kuczynski, Theron Lee Lewis, Amanda Elisa Ennis Mikhail, Arvind Kumar Sinha
  • Patent number: 7495342
    Abstract: A method is described having the steps of providing a surface having a plurality of wire bondable locations, wire bonding a wire to each of the wire bondable locations using a wire capillary tool; controlling the position of the capillary tool with respect to the substrate; after forming a wire bond of the wire to the wire bondable location moving the capillary tool relative to the surface as the capillary tool is moved away from the surface to form a wire having a predetermined shape.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: February 24, 2009
    Assignee: International Business Machines Corporation
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Da-Yuan Shih
  • Patent number: 7472477
    Abstract: The illustrative embodiments provide a method for manufacturing a socket and attaching the socket to a printed circuit board. Surface mounted contacts for a bottom surface of a socket are provided. The surface mounted contacts are a plurality of conductive metal pads that directly attach to surface connections on a printed circuit board. An elongated housing is formed comprising at least two members that are coupled together and disposed to form an aperture in between the at least two members. At least one dimension of the at least two members is selected to compensate for a difference between coefficients of thermal expansion between the socket and the printed circuit board. The at least two members and the surface mounted contacts are aligned with the printed circuit board using a clip. In response to completing a solder reflow process, the clip is removed and a module is inserted into the aperture.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: January 6, 2009
    Assignee: International Business Machines Corporation
    Inventors: Brian Samuel Beaman, Joseph Kuczynski, Theron Lee Lewis, Amanda Elisa Ennis Mikhail, Arvind Kumar Sinha
  • Patent number: 7442049
    Abstract: Techniques for providing electrical connections are provided. In one aspect, an electrical connecting device is provided which comprises a plurality of compressible contacts; and a downstop structure surrounding at least a portion of one or more of the contacts, limiting compression of the contacts, and being configured to limit interaction between the contacts. The electrical connecting device may be further configured to have the plurality of compressible contacts have a first coefficient of thermal expansion and the downstop structure have a second coefficient of thermal expansion, the first coefficient of thermal expansion being substantially similar to the second coefficient of thermal expansion.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: October 28, 2008
    Assignee: International Business Machines Corporation
    Inventors: Gareth Geoffrey Hougham, Brian Samuel Beaman, Claudius Feger
  • Publication number: 20080182443
    Abstract: The illustrative embodiments provide a socket, a method for manufacturing the socket, a device, and a method for compensating for differing coefficients of thermal expansion between a socket and a printed circuit board. The socket includes surface mounted contacts and an elongated housing. The elongated housing comprises at least two members that are coupled together and disposed to form an aperture in between the at least two members, wherein the surface mounted contacts extend from the aperture, and wherein at least one dimension of the at least two members is selected to compensate for a difference between the coefficients of thermal expansion between the socket and a printed circuit board.
    Type: Application
    Filed: April 10, 2008
    Publication date: July 31, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian Samuel Beaman, Joseph Kuczynski, Theron Lee Lewis, Amanda Elisa Ennis Mikhail, Arvind Kumar Sinha
  • Publication number: 20080164896
    Abstract: The present invention is directed to structures having a plurality of discrete insulated elongated electrical conductors projecting from a support surface which are useful as probes for testing of electrical interconnections to electronic devices, such as integrated circuit devices and other electronic components and particularly for testing of integrated circuit devices with rigid interconnection pads and multi-chip module packages with high density interconnection pads and the apparatus for use thereof and to methods of fabrication thereof. Coaxial probe structures are fabricated by the methods described providing a high density coaxial probe.
    Type: Application
    Filed: March 21, 2008
    Publication date: July 10, 2008
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Yun-Hsin Liao, Daniel Peter Morris, Da-Yuan Shih
  • Publication number: 20080129320
    Abstract: The present invention is directed to a high density test probe which provides a means for testing a high density and high performance integrated circuits in wafer form or as discrete chips. The test probe is formed from a dense array of elongated electrical conductors which are embedded in an compliant or high modulus elastomeric material. A standard packaging substrate, such as a ceramic integrated circuit chip packaging substrate is used to provide a space transformer Wires are bonded to an array of contact pads on the surface of the space transformer. The space transformer formed from a multilayer integrated circuit chip packaging substrate. The wires are as dense as the contact location array. A mold is disposed surrounding the array of outwardly projecting wires. A liquid elastomer is disposed in the mold to fill the spaces between the wires.
    Type: Application
    Filed: October 30, 2007
    Publication date: June 5, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Maurice Heathcote Norcott, Da-Yuan Shih, George Frederick Walker
  • Publication number: 20080132094
    Abstract: The present invention is directed to a high density test probe which provides a means for testing a high density and high performance integrated circuits in wafer form or as discrete chips. The test probe is formed from a dense array of elongated electrical conductors which are embedded in an compliant or high modulus elastomeric material. A standard packaging substrate, such as a ceramic integrated circuit chip packaging substrate is used to provide a space transformer. Wires are bonded to an array of contact pads on the surface of the space transformer. The space transformer formed from a multilayer integrated circuit chip packaging substrate. The wires are as dense as the contact location array. A mold is disposed surrounding the array of outwardly projecting wires. A liquid elastomer is disposed in the mold to fill the spaces between the wires. The elastomer is cured and the mold is removed, leaving an array of wires disposed in the elastomer and in electrical contact with the space transformer.
    Type: Application
    Filed: October 30, 2007
    Publication date: June 5, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Maurice Heathcote Norcott, Da-Yuan Shih, George Frederick Walker
  • Publication number: 20080129319
    Abstract: The present invention is directed to a high density test probe which provides a means for testing a high density and high performance integrated circuits in wafer form or as discrete chips. The test probe is formed from a dense array of elongated electrical conductors which are embedded in an compliant or high modulus elastomeric material. A standard packaging substrate, such as a ceramic integrated circuit chip packaging substrate is used to provide a space transformer. Wires are bonded to an array of contact pads on the surface of the space transformer. The space transformer formed from a multilayer integrated circuit chip packaging substrate. The wires are as dense as the contact location array. A mold is disposed surrounding the array of outwardly projecting wires. A liquid elastomer is disposed in the mold to fill the spaces between the wires.
    Type: Application
    Filed: October 30, 2007
    Publication date: June 5, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Maurice Heathcote Norcott, Da-Yuan Shih, George Frederick Walker
  • Publication number: 20080123310
    Abstract: The present invention is directed to a high density test probe which provides a means for testing a high density and high performance integrated circuits in wafer form or as discrete chips. The test probe is formed from a dense array of elongated electrical conductors which are embedded in an compliant or high modulus elastomeric material. A standard packaging substrate, such as a ceramic integrated circuit chip packaging substrate is used to provide a space transformer. Wires are bonded to an array of contact pads on the surface of the space transformer. The space transformer formed from a multilayer integrated circuit chip packaging substrate. The wires are as dense as the contact location array. A mold is disposed surrounding the array of outwardly projecting wires. A liquid elastomer is disposed in the mold to fill the spaces between the wires.
    Type: Application
    Filed: October 30, 2007
    Publication date: May 29, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Maurice Heathcote Norcott, Da-Yuan Shih, George Frederick Walker
  • Publication number: 20080121879
    Abstract: The present invention is directed to a high density test probe which provides a means for testing a high density and high performance integrated circuits in wafer form or as discrete chips. The test probe is formed from a dense array of elongated electrical conductors which are embedded in an compliant or high modulus elastomeric material. A standard packaging substrate, such as a ceramic integrated circuit chip packaging substrate is used to provide a space transformer. Wires are bonded to an array of contact pads on the surface of the space transformer. The space transformer formed from a multilayer integrated circuit chip packaging substrate. The wires are as dense as the contact location array. A mold is disposed surrounding the array of outwardly projecting wires. A liquid elastomer is disposed in the mold to fill the spaces between the wires. The elastomer is cured and the mold is removed, leaving mi array of wires disposed in the elastomer and in electrical contact with the space transformer.
    Type: Application
    Filed: October 31, 2007
    Publication date: May 29, 2008
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Maurice Heathcote Norcott, Da-Yuan Shih, George Frederick Walker
  • Publication number: 20080116914
    Abstract: The present invention is directed to a high density test probe which provides a means for testing a high density and high performance integrated circuits in wafer form or as discrete chips. The test probe is formed from a dense array of elongated electrical conductors which are embedded in an compliant or high modulus elastomeric material. A standard packaging substrate, such as a ceramic integrated circuit chip packaging substrate is used to provide a space transformer. Wires are bonded to an array of contact pads on the surface of the space transformer. The space transformer formed from a multilayer integrated circuit chip packaging substrate. The wires are as dense as the contact location array. A mold is disposed surrounding the array of outwardly projecting wires. A liquid elastomer is disposed in the mold to fill the spaces between the wires.
    Type: Application
    Filed: October 30, 2007
    Publication date: May 22, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Maurice Heathcote Norcott, Da-Yuan Shih, George Frederick Walker
  • Publication number: 20080116912
    Abstract: The present invention is directed to a high density test probe which provides a means for testing a high density and high performance integrated circuits in wafer form or as discrete chips. The test probe is formed from a dense array of elongated electrical conductors which are embedded in an compliant or high modulus elastomeric material. A standard packaging substrate, such as a ceramic integrated circuit chip packaging substrate is used to provide a space transformer. Wires are bonded to an array of contact pads on the surface of the space transformer. The space transformer formed from a multilayer integrated circuit chip packaging substrate. The wires are as dense as the contact location array. A mold is disposed surrounding the array of outwardly projecting wires. A liquid elastomer is disposed in the mold to fill the spaces between the wires. The elastomer is cured and the mold is removed, leaving an array of wires disposed in the elastomer and in electrical contact with the space transformer.
    Type: Application
    Filed: October 30, 2007
    Publication date: May 22, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Maurice Heathcote Norcott, Da-Yuan Shih, George Frederick Walker