Patents by Inventor Bruce A. Murray

Bruce A. Murray has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11126404
    Abstract: A device for providing a random number generator is provided. The device may include a true random number generator, at least one deterministic random number generator, and an exclusive OR logic function. The TRNG has an output and the at least one DRNG has an output. The exclusive OR logic function has a first input coupled to the output of the TRNG and a second input coupled to the output of the at least one DRNG, and an output for providing a random number. The TRNG and the at least one DRNG may include separate and independent entropy sources. A method for generating a random number is also provided.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: September 21, 2021
    Assignee: NXP B.V.
    Inventors: Bruce Murray, Mario Lamberger
  • Patent number: 11097983
    Abstract: Methods for preparing ceramic matrix composites using melt infiltration and chemical vapor infiltration are provided as well as the resulting ceramic matrix composites. The methods and products include the incorporation of sacrificial fibers to provide improved infiltration of the fluid infiltrant. The sacrificial fibers are removed, such as decomposed during pyrolysis, resulting in the formation of regular and elongate channels throughout the ceramic matrix composite. Infiltration of the fluid infiltrant can then take place using the elongate channels resulting in improved density and an improved ceramic matrix composite product.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: August 24, 2021
    Assignee: General Electric Company
    Inventors: David Bruce Hall, James Joseph Murray, Jason Robert Parolini, Michael Alan Vallance, Juan Borja, Daniel George Norton, Jared Hogg Weaver, Daniel Gene Dunn
  • Publication number: 20210241092
    Abstract: A method includes receiving a request to solve a problem defined by input information and applying a neural network to generate an answer to the problem. The neural network includes an input level, a manager level including a first manager, a worker level including first and second workers, and an output level. Applying the neural network includes implementing the input level to provide a piece of input information to the first manager; implementing the first manager to delegate portions of the piece of information to the first and second workers; implementing the first worker to operate on its portion of information to generate a first output; implementing the second worker to operate on its portion of information to generate a second output; and implementing the output level to generate the answer to the problem, using the first and second outputs. The method also includes transmitting a response comprising the answer.
    Type: Application
    Filed: February 4, 2020
    Publication date: August 5, 2021
    Inventors: Garrett Thomas Botkin, Matthew Bruce Murray
  • Patent number: 10945051
    Abstract: An apparatus includes a processor that monitors transmissions destined for an external network, determines that a transmission includes original media associated with a subject, and intercepts the transmission before it reaches the external network. The processor generates modified media by selecting a subset of data elements of the original media and replacing a value of each data element of the subset with a new value. At least one of the subset of data elements and the set of new values is chosen such that an accuracy metric calculated for a first generative algorithm, trained to generate synthetic representations of the subject based on modified media, is less than, by a given factor, the accuracy metric calculated for a second generative algorithm, trained to generate synthetic representations of the subject based on original media. The processor replaces the transmission with a new transmission that includes the modified media.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: March 9, 2021
    Assignee: Bank of America Corporation
    Inventors: Matthew Bruce Murray, Garrett Thomas Botkin, Kathleen D. Schaumburg
  • Publication number: 20200371752
    Abstract: A device for providing a random number generator is provided. The device may include a true random number generator, at least one deterministic random number generator, and an exclusive OR logic function. The TRNG has an output and the at least one DRNG has an output. The exclusive OR logic function has a first input coupled to the output of the TRNG and a second input coupled to the output of the at least one DRNG, and an output for providing a random number. The TRNG and the at least one DRNG may include separate and independent entropy sources. A method for generating a random number is also provided.
    Type: Application
    Filed: May 20, 2019
    Publication date: November 26, 2020
    Inventors: Bruce Murray, Mario Lamberger
  • Publication number: 20200192822
    Abstract: A memory system, comprising: i) a first electronic device comprising a processor, ii) a second electronic device being external to the first electronic device and comprising a memory, wherein the memory stores a memory image over at least a part of a data set stored on the memory, and iii) a hash value related to the memory image. The first electronic device and the second electronic device are coupled such that the processor has at least partial control over the second electronic device. The processor is configured to, when updating the data set stored on the memory of the second electronic device, also update the hash value related to the memory image using an incremental hashing operation so that only those parts of the memory image are processed that have changed.
    Type: Application
    Filed: December 9, 2019
    Publication date: June 18, 2020
    Inventors: Marcel Rene van Loon, Bruce Murray
  • Patent number: 10680810
    Abstract: A method is provided for generating an elliptic curve cryptography key pair that uses two topologically identical pseudo-random number generators operating in parallel and in step with each other. One generator operates in the scalar number domain and the other generator operates in the elliptic curve point domain. Parallel sequences of pseudo-random elliptic curve points aG and corresponding scalars a are generated in this manner. A scalar a becomes a private key and an elliptic curve point aG is a public key of a key pair. Each generator is advanced by one iteration successively, and the isomorphic relationship ensures that the point domain generator always contains values which are multiples of the system base point according to values contained in the corresponding position in the number domain generator. In one embodiment, the pseudo-random number generators are each characterized as being lagged Fibonacci generators.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: June 9, 2020
    Assignee: NXP B.V.
    Inventors: Joppe Willem Bos, Bjorn Fay, Bruce Murray
  • Patent number: 10630462
    Abstract: A method for implementing a pseudo-random function (PRF) using a white-box implementation of a cryptographic function in N rounds, including: receiving an input to the PRF; receiving a cryptographic key in a first round; encrypting, using the white-box implementation of the cryptographic function and the cryptographic key, an input message that is one of M possible input messages based upon a portion of the input to produce a first output; for each succeeding round: encrypting, using the white-box implementation of the cryptographic function and an ith cryptographic key, further input messages that are one of M possible input messages based upon a further portion of the input to produce an ith output, wherein the ith cryptographic key is the output from the preceding round, wherein the white-box implementation of the cryptographic function only produces a correct output for the M possible input messages and produces an incorrect output for input messages that are not one of the M possible input messages.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: April 21, 2020
    Assignee: NXP B.V.
    Inventors: Wilhelmus Petrus Adrianus Johannus Michiels, Marcel Medwed, Jan Hoogerbrugge, Ventzislav Nikov, Bruce Murray, Joppe Willem Bos
  • Patent number: 10484173
    Abstract: A method of calculating the x-coordinate(xM) of a point mapping in an elliptic curve Diffie-Hellman key exchange protocol (EC-DHKF), wherein the point mapping is defined as sG+H, where sG is a point (xS,yS) on an elliptic curve and H is a point (xH,yH) on the elliptic curve, including: computing V=yS2 based upon the elliptic curve and xS; computing W=yH2 based upon the elliptic curve and xH; computing U=sqrt(W·V)mod p, where p is a large prime number; choosing U?=U or U?=p?U such that U? based upon a characteristic agreed upon by the parties to the EC-DHKF; computing xM based upon V, W, U?, xS, xH, and p.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: November 19, 2019
    Assignee: NXP B.V.
    Inventor: Bruce Murray
  • Patent number: 10437524
    Abstract: In high security devices, like smart cards, the on-board software may be embedded in ROM (read only memory). But, based on flexibility arguments, non-volatile flash memory based software storage can be more preferred. This invention describes a method to recover from a situation of data loss on flash devices by combining the on-device available secure boot-loading with embedded physical unclonable functions (PUF), where the PUF provides the cryptographic key for starting the data recovery procedure.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: October 8, 2019
    Assignee: NXP B.V.
    Inventors: Thomas Wille, Bruce Murray
  • Publication number: 20190249081
    Abstract: Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape).
    Type: Application
    Filed: April 26, 2019
    Publication date: August 15, 2019
    Applicants: INTELLIGENT MATERIAL SOLUTIONS, INC., THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Joshua E. COLLINS, Howard Y. BELL, Xingchen YE, Christopher Bruce MURRAY
  • Patent number: 10341098
    Abstract: A method is provided for performing elliptic curve cryptography that reduces the number of required computations to produce, for example, a key pair. The number of computations is reduced by changing how a random nonce used in the computations is selected. In an embodiment, a look-up table is generated having pre-computed scalar values and elliptic curve points. Every time a new pseudo-random value is created for use in the ECDSA, a combination of the look-up table values is used to create multiple intermediate values. One of the multiple intermediate values is randomly chosen as a replacement value for one of the existing table entries. Each time the look-up table is used, multiple entries in the look-up table are updated to new look-up table values as described. In this manner, new randomness is provided in every step to generate the next pseudo-random nonce as a combination of multiple internally stored temporary look-up table values. Alternately, another mathematical group may be used.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: July 2, 2019
    Assignee: NXP B.V.
    Inventors: Joppe Willem Bos, Bjorn Fay, Bruce Murray
  • Publication number: 20190132116
    Abstract: A method for implementing a pseudo-random function (PRF) using a white-box implementation of a cryptographic function in N rounds, including: receiving an input to the PRF; receiving a cryptographic key in a first round; encrypting, using the white-box implementation of the cryptographic function and the cryptographic key, an input message that is one of M possible input messages based upon a portion of the input to produce a first output; for each succeeding round: encrypting, using the white-box implementation of the cryptographic function and an ith cryptographic key, further input messages that are one of M possible input messages based upon a further portion of the input to produce an ith output, wherein the ith cryptographic key is the output from the preceding round, wherein the white-box implementation of the cryptographic function only produces a correct output for the M possible input messages and produces an incorrect output for input messages that are not one of the M possible input messages.
    Type: Application
    Filed: October 27, 2017
    Publication date: May 2, 2019
    Inventors: Wilhelmus Petrus Adrianus Johannus MICHIELS, Marcel MEDWED, Jan HOOGERBRUGGE, Ventzislav NIKOV, Bruce MURRAY, Joppe Willem BOS
  • Patent number: 10273407
    Abstract: Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape).
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: April 30, 2019
    Assignees: INTELLIGENT MATERIAL SOLUTIONS, INC., THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Joshua E. Collins, Howard Y. Bell, Xingchen Ye, Christopher Bruce Murray
  • Publication number: 20190114115
    Abstract: In high security devices, like smart cards, the on-board software may be embedded in ROM (read only memory). But, based on flexibility arguments, non-volatile flash memory based software storage can be more preferred. This invention describes a method to recover from a situation of data loss on flash devices by combining the on-device available secure boot-loading with embedded physical unclonable functions (PUF), where the PUF provides the cryptographic key for starting the data recovery procedure.
    Type: Application
    Filed: October 12, 2017
    Publication date: April 18, 2019
    Inventors: Thomas Wille, Bruce Murray
  • Publication number: 20190010394
    Abstract: Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape).
    Type: Application
    Filed: August 30, 2018
    Publication date: January 10, 2019
    Applicants: INTELLIGENT MATERIAL SOLUTIONS, INC., THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Joshua E. COLLINS, Howard Y. BELL, Xingchen YE, Christopher Bruce MURRAY
  • Patent number: 10146464
    Abstract: A data processing system having a PUF and method for providing multiple enrollments, or instantiations, of the PUF are provided. A PUF segment includes a plurality of SRAM cells on an integrated circuit. A PUF response from the PUF segment is used to create a first activation code and a first PUF key. A second PUF key may be created from the PUF response. Initially, during a second enrollment, the PUF response is combined with the first activation code to reproduce a codeword. The first secret string is reconstructed by encoding the codeword. The codeword is combined with the first activation code to reproduce the PUF response. Inverse anti-aging is applied to the PUF response. Then a second secret string is generated using a random number generator (RNG). The second secret string is encoded to produce a new codeword. The new codeword is combined with the recovered PUF response to create a second activation code. The second activation coded is hashed with the second secret string to provide a second PUF key.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: December 4, 2018
    Assignee: NXP B.V.
    Inventors: Bruce Murray, Helmut Alexander Goettl, Sven Heine, Christiaan Kuipers
  • Patent number: 10066163
    Abstract: Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape).
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: September 4, 2018
    Assignees: Intelligent Material Solutions, Inc., The Trustees of the University of Pennsylvannia
    Inventors: Joshua E. Collins, Howard Y. Bell, Xingchen Ye, Christopher Bruce Murray
  • Patent number: 10044512
    Abstract: Reader (420) for determining the validity of a connection to a transponder (440), designed to measure a response time of a transponder (440) and to authenticate the transponder (440) in two separate steps. Transponder (440) for determining the validity of a connection to a reader (420), wherein the transponder (440) is designed to provide information for response time measurement to said reader (420) and to provide information for authentication to said reader (420) in two separate steps, wherein at least a part of data used for the authentication is included in a communication message transmitted between the reader (420) and the transponder (440) during the measuring of the response time.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: August 7, 2018
    Assignee: NXP B.V.
    Inventors: Peter Thueringer, Hans De Jong, Bruce Murray, Heike Neumann, Paul Hubmer, Susanne Stern
  • Publication number: 20180212767
    Abstract: A method is provided for performing elliptic curve cryptography that reduces the number of required computations to produce, for example, a key pair. The number of computations is reduced by changing how a random nonce used in the computations is selected. In an embodiment, a look-up table is generated having pre-computed scalar values and elliptic curve points. Every time a new pseudo-random value is created for use in the ECDSA, a combination of the look-up table values is used to create multiple intermediate values. One of the multiple intermediate values is randomly chosen as a replacement value for one of the existing table entries. Each time the look-up table is used, multiple entries in the look-up table are updated to new look-up table values as described. In this manner, new randomness is provided in every step to more e?ciently generate the next pseudo-random nonce as a combination of multiple internally stored temporary look-up table values. Alternately, another mathematical group may be used.
    Type: Application
    Filed: January 24, 2017
    Publication date: July 26, 2018
    Inventors: JOPPE WILLEM BOS, BJORN FAY, BRUCE MURRAY