Patents by Inventor Bruce D. Marchant

Bruce D. Marchant has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100176452
    Abstract: A lateral MOSFET having a substrate, first and second epitaxial layers grown on the substrate and a gate electrode formed on a gate dielectric which in turn is formed on a top surface of the second epitaxial layer. The second epitaxial layer comprises a drain region which extends to a top surface of the epitaxial layer and is proximate to a first edge of the gate electrode, a source region which extends to a top surface of the second epitaxial layer and is proximate to a second edge of the gate electrode, a heavily doped body under at least a portion of the source region, and a lightly doped well under the gate dielectric located near the transition region of the first and second epitaxial layers. A PN junction between the heavily doped body and the first epitaxial region under the heavily doped body has an avalanche breakdown voltage that is substantially dependent on the doping concentration in the upper portion of the first epitaxial layer that is beneath the heavily doped body.
    Type: Application
    Filed: January 12, 2009
    Publication date: July 15, 2010
    Inventors: Bruce D. Marchant, Dean Probst
  • Publication number: 20090230465
    Abstract: A field effect transistor includes a body region of a first conductivity type over a semiconductor region of a second conductivity type. A gate trench extends through the body region and terminates within the semiconductor region. At least one conductive shield electrode is disposed in the gate trench. A gate electrode is disposed in the gate trench over but insulated from the at least one conductive shield electrode. A shield dielectric layer insulates the at lease one conductive shield electrode from the semiconductor region. A gate dielectric layer insulates the gate electrode from the body region. The shield dielectric layer is formed such that it flares out and extends directly under the body region.
    Type: Application
    Filed: March 16, 2009
    Publication date: September 17, 2009
    Inventors: Hamza Yilmaz, Daniel Calafut, Christopher Boguslaw Kocon, Steven P. Sapp, Dean E. Probst, Nathan L. Kraft, Thomas E. Grebs, Rodney S. Ridley, Gary M. Dolny, Bruce D. Marchant, Joseph A. Yedinak
  • Patent number: 7504303
    Abstract: A method for forming a shielded gate field effect transistor includes the following steps. Trenches extending into a silicon region are formed using a mask that includes a protective layer. A shield dielectric layer lining sidewalls and bottom of each trench is formed. A shield electrode is formed in a bottom portion of each trench. Protective spacers are formed along upper sidewalls of each trench. An inter-electrode dielectric is formed over the shield electrode. The protective spacers and the protective layer of the mask prevent formation of inter-electrode dielectric along the upper sidewalls of each trench and over mesa surfaces adjacent each trench. A gate electrode is formed in each trench over the inter-electrode dielectric.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: March 17, 2009
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Hamza Yilmaz, Daniel Calafut, Christopher Boguslaw Kocon, Steven P. Sapp, Dean E. Probst, Nathan L. Kraft, Thomas E. Grebs, Rodney S. Ridley, Gary M. Dolny, Bruce D. Marchant, Joseph A. Yedinak
  • Patent number: 7485532
    Abstract: A method for forming a FET includes the following steps. Trenches are formed in a semiconductor region of a first conductivity type. A well region of a second conductivity type is formed in the semiconductor region. Source regions of the first conductivity type are formed in the well region such that channel regions defined by a spacing between the source regions and a bottom surface of the well region are formed in the well region along opposing sidewalls of the trenches. A gate dielectric layer having a non-uniform thickness is formed along the opposing sidewalls of the trenches such that a variation in thickness of the gate dielectric layer along at least a lower portion of the channel regions is: (i) substantially linear, and (ii) inversely dependent on a variation in doping concentration in the lower portion of the channel regions. A gate electrode is formed in each trench.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: February 3, 2009
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Bruce D. Marchant, Ashok Challa
  • Publication number: 20080166846
    Abstract: A method for forming a FET includes the following steps. Trenches are formed in a semiconductor region of a first conductivity type. A well region of a second conductivity type is formed in the semiconductor region. Source regions of the first conductivity type are formed in the well region such that channel regions defined by a spacing between the source regions and a bottom surface of the well region are formed in the well region along opposing sidewalls of the trenches. A gate dielectric layer having a non-uniform thickness is formed along the opposing sidewalls of the trenches such that a variation in thickness of the gate dielectric layer along at least a lower portion of the channel regions is: (i) substantially linear, and (ii) inversely dependent on a variation in doping concentration in the lower portion of the channel regions. A gate electrode is formed in each trench.
    Type: Application
    Filed: March 20, 2008
    Publication date: July 10, 2008
    Inventors: Bruce D. Marchant, Ashok Challa
  • Publication number: 20080150020
    Abstract: A semiconductor power device includes a drift region of a first conductivity type, a well region extending above the drift region and having a second conductivity type opposite the first conductivity type, an active trench extending through the well region and into the drift region. The active trench, which includes sidewalls and bottom lined with dielectric material, is substantially filled with a first conductive layer and a second conductive layer. The second conductive layer forms a gate electrode and is disposed above the first conductive layer and is separated from the first conductive layer by an inter-electrode dielectric material. The device also includes source regions having the first conductivity type formed inside the well region and adjacent the active trench and a charge control trench that extends deeper into the drift region than the active trench and is substantially filled with material to allow for vertical charge control in the drift region.
    Type: Application
    Filed: January 22, 2008
    Publication date: June 26, 2008
    Inventors: Ashok Challa, Alan Elbanhawy, Thomas E. Grebs, Nathan L. Kraft, Dean E. Probst, Rodney S. Ridley, Steven P. Sapp, Qi Wang, Chongman Yun, J. G. Lee, Peter H. Wilson, Joseph A. Yedinak, J. Y. Jung, H. C. Jang, Babak S. Sani, Richard Stokes, Gary M. Dolny, John Mytych, Becky Losee, Adam Selsley, Robert Herrick, James J. Murphy, Gordon K. Madson, Bruce D. Marchant, Christopher L. Rexer, Christopher B. Kocon, Debra S. Woolsey
  • Publication number: 20080138953
    Abstract: A method for forming thick oxide at the bottom of a trench formed in a semiconductor substrate includes forming a conformal oxide film that fills the trench and covers a top surface of the substrate. and etching the oxide film off the top surface of the substrate and inside the trench to leave a substantially flat layer of oxide having a target thickness at the bottom of the trench. The oxide film can be deposited by sub-atmospheric chemical vapor deposition processes, directional Tetraethoxysilate (TEOS) processes, or high density plasma deposition processes that form a thicker oxide at the bottom of the trench than on the sidewalls of the trench.
    Type: Application
    Filed: February 15, 2008
    Publication date: June 12, 2008
    Inventors: Ashok Challa, Alan Elbanhawy, Dean E. Probst, Steven P. Sapp, Peter H. Wilson, Babak S. Sani, Becky Losee, Robert Herrick, James J. Murphy, Gordon K. Madson, Bruce D. Marchant, Christopher B. Kocon, Debra S. Woolsey
  • Publication number: 20080135931
    Abstract: A semiconductor power device includes a drift region of a first conductivity type, a well region extending above the drift region and having a second conductivity type opposite the first conductivity type, an active trench extending through the well region and into the drift region, source regions having the first conductivity type formed in the well region adjacent the active trench, and a first termination trench extending below the well region and disposed at an outer edge of an active region of the device. The sidewalls and bottom of the active trench are lined with dielectric material, and substantially filled with a first conductive layer forming an upper electrode and a second conductive layer forming a lower electrode, the upper electrode being disposed above the lower electrode and separated therefrom by inter-electrode dielectric material.
    Type: Application
    Filed: February 15, 2008
    Publication date: June 12, 2008
    Inventors: Ashok Challa, Alan Elbanhawy, Thomas E. Grebs, Nathan L. Kraft, Dean E. Probst, Rodney S. Ridlay, Steven P. Sapp, Qi Wang, Chongman Yun, J.G. Lee, Peter H. Wilson, Joseph A. Yedinak, J.Y. Jung, H.C. Jang, Babak S. Sanl, Richard Stokes, Gary M. Dolny, John Mytych, Becky Losee, Adam Selsley, Robert Herrick, James J. Murphy, Gordon K. Madson, Bruce D. Marchant, Christopher L. Rexer, Christopher B. Kocon, Debra S. Woolsey
  • Patent number: 7382019
    Abstract: A field effect transistor includes a trench extending into a semiconductor region. The trench has a gate dielectric lining the trench sidewalls and a gate electrode therein. A channel region in the semiconductor region extends along a sidewall of the trench. The gate dielectric has a non-uniform thickness such that a variation in thickness of the gate dielectric along at least a lower portion of the channel region is inversely dependent on a variation in doping concentration in the at least a lower portion of the channel region.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: June 3, 2008
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Bruce D. Marchant, Ashok Challa
  • Patent number: 6818513
    Abstract: A method of forming a field effect transistor device includes: forming a well region of a second conductivity type in a semiconductor substrate of a first conductivity type, the semiconductor substrate having a major surface and a drain region; forming a source region of the first conductivity type in the well region; forming a trench gate electrode adjacent to the source region; forming a stripe trench extending from the major surface of the semiconductor substrate into the semiconductor substrate to a predetermined depth; and depositing a semiconductor material of the second conductivity type within the stripe trench.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: November 16, 2004
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Bruce D. Marchant
  • Patent number: 6713813
    Abstract: A field effect transistor device and a method for making a field effect transistor device are disclosed. The field effect transistor device includes a stripe trench extending from the major surface of a semiconductor substrate into the semiconductor substrate to a predetermined depth. The stripe trench contains a semiconductor material of the second conductivity type to form a PN junction at an interface formed with the semiconductor substrate.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: March 30, 2004
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Bruce D. Marchant
  • Publication number: 20030060013
    Abstract: A process for manufacturing trench field effect transistors improves transistor ruggedness without compromising transistor cell pitch. Instead of a high dose implant and heat cycle, the process of the invention forms the transistor heavy body by etching a trench into the body region and filling the heavy body trench with high conductivity material such as metal that makes contact to both the body and the source region.
    Type: Application
    Filed: September 24, 1999
    Publication date: March 27, 2003
    Inventors: BRUCE D. MARCHANT, DEAN PROBST, PAUL THORUP, DENSEN CAO
  • Publication number: 20020100933
    Abstract: A field effect transistor device and a method for making a field effect transistor device are disclosed. The field effect transistor device includes a stripe trench extending from the major surface of a semiconductor substrate into the semiconductor substrate to a predetermined depth. The stripe trench contains a semiconductor material of the second conductivity type to form a PN junction at an interface formed with the semiconductor substrate.
    Type: Application
    Filed: January 30, 2001
    Publication date: August 1, 2002
    Inventor: Bruce D. Marchant