Patents by Inventor Bruce J. Persson

Bruce J. Persson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10335042
    Abstract: The present system is directed in various embodiments to methods, devices and systems for sensing, measuring and evaluating compliance in a bodily conduit. In other embodiments, the methods, devices and systems sense, measure, determine, display and/or interpret compliance in a bodily conduit and/or a lesion within the bodily conduit. In all embodiments, the sensing, measuring, determining, displaying and/or interpreting may occur before, during and/or after a procedure performed within the bodily conduit. An exemplary conduit comprises a blood vessel and an exemplary procedure comprises a vascular procedure such as atherectomy, angioplasty, stent placement and/or biovascular scaffolding.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: July 2, 2019
    Assignee: Cardiovascular Systems, Inc.
    Inventors: Victor L. Schoenle, Thomas B. Hoegh, Bruce J. Persson, Kayla Eichers, Matthew Tilstra, Richard C. Mattison, Joseph P. Higgins, Michael J. Grace, Matthew Saterbak, Matthew D. Cambronne, Robert E. Kohler
  • Publication number: 20190151656
    Abstract: Devices, systems and methods of neurostimulation for treating obstructive sleep apnea.
    Type: Application
    Filed: October 18, 2018
    Publication date: May 23, 2019
    Applicant: CYBERONICS, INC.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Brian D. Kuhnley, Dale G. Suilmann, Bruce J. Persson, John P. Beck, Sidney F. Hauschild, Paula M. Kaplan, Adam K. Hoyhtya, Wondimeneh Tesfayesus, Robert E. Atkinson
  • Patent number: 10105538
    Abstract: Devices, systems and methods of neurostimulation for treating obstructive sleep apnea.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: October 23, 2018
    Assignee: Cyberonics, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Brian D. Kuhnley, Dale G. Suilmann, Bruce J. Persson, John P. Beck, Sidney F. Hauschild, Paula M. Kaplan, Adam K. Hoyhtya, Wondimeneh Tesfayesus, Robert E. Atkinson
  • Publication number: 20180200512
    Abstract: Devices, systems and methods of neurostimulation for treating obstructive sleep apnea. The system is adapted to send an electrical signal from an implanted neurostimulator through a stimulation lead to a patient's nerve at an appropriate phase of the respiratory cycle based on input from a respiration sensing lead. External components are adapted for wireless communication with the neurostimulator. The neurostimulator is adapted to deliver therapeutic stimulation based on inputs.
    Type: Application
    Filed: March 12, 2018
    Publication date: July 19, 2018
    Applicant: Cyberonics, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Brian D. Kuhnley, Dale G. Suilmann, Bruce J. Persson, John P. Beck, Sidney F. Hauschild, Wondimeneh Tesfayesus, Jason J. Skubitz, Mark R. Bosshard, Daniel A. Parrish, Robert E. Atkinson
  • Publication number: 20180078761
    Abstract: A method including chronically implanting a nerve cuff electrode on a portion of a hypoglossal nerve, chronically implanting a respiration sensing lead subcutaneously in a thorax of a patient, the respiration sensing lead having a plurality of bio-impedance electrodes defining at least one bio-impedance vector. The method may also include sensing a bio-impedance signal corresponding to respiration via a bio-impedance vector on an anterior side of the thorax, analyzing the bio-impedance signal to identify onsets of expiration, predicting an onset of a future expiratory phase, and delivering a stimulus to the portion of the hypoglossal nerve via the nerve cuff electrode, wherein the stimulus is delivered as a function of the bio-impedance signal; wherein stimulus delivery is initiated before the onset of the future expiratory phase and continued during an entire inspiratory phase, and wherein the method is performed without identifying an onset of an inspiratory phase.
    Type: Application
    Filed: July 31, 2017
    Publication date: March 22, 2018
    Applicant: CYBERONICS, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Bruce J. Persson, Robert E. Atkinson, Scott T. Mazar
  • Patent number: 9913982
    Abstract: Devices, systems and methods of neurostimulation for treating obstructive sleep apnea. The system is adapted to send an electrical signal from an implanted neurostimulator through a stimulation lead to a patient's nerve at an appropriate phase of the respiratory cycle based on input from a respiration sensing lead. External components are adapted for wireless communication with the neurostimulator. The neurostimulator is adapted to deliver therapeutic stimulation based on inputs.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: March 13, 2018
    Assignee: Cyberonics, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Brian D. Kuhnley, Dale G. Suilmann, Bruce J. Persson, John P. Beck, Sidney F. Hauschild, Wondimeneh Tesfayesus, Jason J. Skubitz, Mark R. Bosshard, Daniel A. Parrish, Robert E. Atkinson
  • Publication number: 20180008824
    Abstract: Devices, systems and methods of neurostimulation for treating obstructive sleep apnea.
    Type: Application
    Filed: August 25, 2017
    Publication date: January 11, 2018
    Applicant: Cyberonics, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Brian D. Kuhnley, Dale G. Suilmann, Bruce J. Persson, John P. Beck, Sidney Hauschild, Paula M. Kaplan, Adam K. Hoyhtya, Wondimeneh Tesfayesus, Robert E. Atkinson, Peter R. Eastwood, David R. Hillman
  • Patent number: 9744354
    Abstract: Devices, systems and methods of neurostimulation for treating obstructive sleep apnea.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: August 29, 2017
    Assignee: CYBERONICS, INC.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Brian D. Kuhnley, Dale G. Suilmann, Bruce J. Persson, John P. Beck, Sidney F. Hauschild, Paula M. Kaplan, Adam K. Hoyhtya, Wondimeneh Tesfayesus, Robert E. Atkinson, Peter R. Eastwood, David R. Hillman
  • Publication number: 20170001013
    Abstract: Devices, systems, and methods are described by which the blood pressure, nervous system activity, and neurohormonal activity may be selectively and controllably reduced by activating baroreceptors. A baroreceptor activation device is positioned near a baroreceptor, preferably a baroreceptor located in the carotid sinus. A control system may be used to modulate the baroreceptor activation device. The control system may utilize an algorithm defining a stimulus regimen which promotes long term efficacy and reduces power requirements/consumption. The baroreceptor activation device may utilize electrodes to activate the baroreceptors. The electrodes may be adapted for connection to the carotid arteries at or near the carotid sinus, and may be designed to minimize extraneous tissue stimulation.
    Type: Application
    Filed: July 29, 2016
    Publication date: January 5, 2017
    Inventors: Stephen L. Bolea, Robert S. Kieval, Bruce J. Persson, David J. Serdar, Peter T. Keith, Eric D. Irwin, Martin A. Rossing
  • Patent number: 9427583
    Abstract: Devices, systems and methods are described by which the blood pressure, nervous system activity, and neurohormonal activity may be selectively and controllably reduced by activating baroreceptors. A baroreceptor activation device is positioned near a baroreceptor, preferably a baroreceptor located in the carotid sinus. A control system may be used to modulate the baroreceptor activation device. The control system may utilize an algorithm defining a stimulus regimen which promotes long term efficacy and reduces power requirements/consumption. The baroreceptor activation device may utilize electrodes to activate the baroreceptors. The electrodes may be adapted for connection to the carotid arteries at or near the carotid sinus, and may be designed to minimize extraneous tissue stimulation.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: August 30, 2016
    Assignee: CVRx, Inc.
    Inventors: Stephen L. Bolea, Robert S. Kieval, Bruce J. Persson, David J. Serdar, Peter T. Keith, Eric D. Irwin, Martin A. Rossing
  • Publication number: 20160183807
    Abstract: The present system is directed in various embodiments to methods, devices and systems for sensing, measuring and evaluating compliance in a bodily conduit. In other embodiments, the methods, devices and systems sense, measure, determine, display and/or interpret compliance in a bodily conduit and/or a lesion within the bodily conduit. In all embodiments, the sensing, measuring, determining, displaying and/or interpreting may occur before, during and/or after a procedure performed within the bodily conduit. An exemplary conduit comprises a blood vessel and an exemplary procedure comprises a vascular procedure such as atherectomy, angioplasty, stent placement and/or biovascular scaffolding.
    Type: Application
    Filed: July 16, 2015
    Publication date: June 30, 2016
    Inventors: Victor L. Schoenle, Thomas B. Hoegh, Bruce J. Persson, Kayla Eichers, Matthew Tilstra, Richard C. Mattison, Joseph P. Higgins, Michael J. Grace, Matthew Saterbak, Matthew D. Cambronne, Robert E. Kohler
  • Publication number: 20150238763
    Abstract: Devices, systems and methods are described by which the blood pressure, nervous system activity, and neurohormonal activity may be selectively and controllably reduced by activating baroreceptors. A baroreceptor activation device is positioned near a baroreceptor, preferably a baroreceptor located in the carotid sinus. A control system may be used to modulate the baroreceptor activation device. The control system may utilize an algorithm defining a stimulus regimen which promotes long term efficacy and reduces power requirements/consumption. The baroreceptor activation device may utilize electrodes to activate the baroreceptors. The electrodes may be adapted for connection to the carotid arteries at or near the carotid sinus, and may be designed to minimize extraneous tissue stimulation.
    Type: Application
    Filed: April 30, 2015
    Publication date: August 27, 2015
    Inventors: Stephen L. Bolea, Robert S. Kieval, Bruce J. Persson, David J. Serdar, Peter T. Keith, Eric D. Irwin, Martin A. Rossing
  • Patent number: 9044609
    Abstract: Devices, systems and methods are described by which the blood pressure, nervous system activity, and neurohormonal activity may be selectively and controllably reduced by activating baroreceptors. A baroreceptor activation device is positioned near a baroreceptor, preferably a baroreceptor located in the carotid sinus. A control system may be used to modulate the baroreceptor activation device. The control system may utilize an algorithm defining a stimulus regimen which promotes long term efficacy and reduces power requirements/consumption. The baroreceptor activation device may utilize electrodes to activate the baroreceptors. The electrodes may be adapted for connection to the carotid arteries at or near the carotid sinus, and may be designed to minimize extraneous tissue stimulation.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: June 2, 2015
    Assignee: CVRx, Inc.
    Inventors: Stephen L. Bolea, Robert S. Kieval, Bruce J. Persson, David J. Serdar, Peter T. Keith, Eric D. Irwin, Martin A. Rossing
  • Patent number: 8744589
    Abstract: A method of stimulating a nerve of a patient. The method may include positioning a first electrode set on a first portion of the nerve, wherein the first portion of the nerve innervates a first upper airway muscle of the patient. The method may include positioning a second electrode set on a second portion of the nerve, wherein the second portion of the nerve innervates a second upper airway muscle of the patient. The method may further include alternatively delivering an electrical stimulation to the first electrode set and to the second electrode set.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: June 3, 2014
    Assignee: Cyberonics, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Bruce J. Persson, Robert E. Atkinson, Scott T. Mazar
  • Patent number: 8718783
    Abstract: A method of stimulating a hypogossal nerve including chronically implanting a nerve cuff electrode on a portion of the hypoglossal nerve. The method may further include sensing a signal corresponding to respiration and detecting expiratory onset from the sensed signal. Moreover, the method may include delivering a stimulus to the portion of the hypoglossal nerve via the nerve cuff electrode, wherein the stimulus is delivered as a function of the detected expiratory onset.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: May 6, 2014
    Assignee: Cyberonics, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Bruce J. Persson, Robert E. Atkinson, Scott T. Mazar
  • Patent number: 8718789
    Abstract: Devices, systems and methods are described by which the blood pressure, nervous system activity, and neurohormonal activity may be selectively and controllably reduced by activating baroreceptors. A baroreceptor activation device is positioned near a baroreceptor, preferably a baroreceptor located in the carotid sinus. A control system may be used to modulate the baroreceptor activation device. The control system may utilize an algorithm defining a stimulus regimen which promotes long term efficacy and reduces power requirements/consumption. The baroreceptor activation device may utilize electrodes to activate the baroreceptors. The electrodes may be adapted for connection to the carotid arteries at or near the carotid sinus, and may be designed to minimize extraneous tissue stimulation.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: May 6, 2014
    Assignee: CVRx, Inc.
    Inventors: Stephen L. Bolea, Robert S. Kieval, Bruce J. Persson, David J. Serdar, Peter T. Keith, Eric D. Irwin, Martin A. Rossing
  • Patent number: 8639354
    Abstract: In an embodiment, a lead system includes a cuff electrode to secure to a nerve, a first lead portion defining a longitudinal axis, and a second lead portion. An anchor may be between the first lead portion and the second lead portion to secure to non-nerve structure. A connector may extend from the second lead portion to connect to a pulse generator. Electrode elements are spaced apart along the cuff body. The cuff electrode may include a first resilient arcuate-shaped portion extending in a first circumferential direction and having a first arc length; and a second resilient arcuate-shaped portion integrally formed with the first arcuate-shaped portion, extending in a second circumferential direction, and having a second arm length greater that the first arc length. The second arcuate-shaped portion overlaps the first arcuate-shaped portion, The first and second arcuate-shaped portions define a lumen having a substantially re-closable opening.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: January 28, 2014
    Assignee: Cyberonics, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Bruce J. Persson, Robert E. Atkinson, Scott T. Mazar
  • Patent number: 8626304
    Abstract: In one embodiment, a method of treating an upper airway may include delivering a first electrical stimulation to a first portion of a nerve innervating a first upper airway muscle via a plurality of electrodes adjacent the nerve. The method may further include delivering a second electrical stimulation to a second portion of the nerve innervating a second upper airway muscle via the plurality of electrodes, wherein the second muscle is different from the first muscle.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: January 7, 2014
    Assignee: Cyberonics, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Bruce J. Persson, Robert E. Atkinson, Scott T. Mazar
  • Patent number: 8606359
    Abstract: The present invention comprises a medical device having a baroreflex stimulator to generate a stimulation signal, the stimulation signal being adapted to stimulate a baroreflex, and a controller to communicate with the baroreflex stimulator and implement a baroreflex stimulus regimen to vary an intensity of the baroreflex stimulation provided by the stimulation signal to maintain stimulation efficacy.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: December 10, 2013
    Assignee: CVRx, Inc.
    Inventors: Martin A. Rossing, Robert S. Kieval, David J. Serdar, Bruce J. Persson
  • Patent number: 8583236
    Abstract: Devices, systems and methods are disclosed by which the blood pressure, nervous system activity, and neurohormonal activity may be selectively and controllably reduced by activating baroreceptors. An intravascularly implantable medical device may include a sleeve formed at least in part of an expandable member configured to be movably attachable about at least a portion of an outer surface of an expandable intravascular stent, and one or more electrodes disposed on the sleeve and coupled to a control system and configured to selectively activate baroreceptors within a wall of a vessel when the expandable intravascular stent is implanted within the vessel.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: November 12, 2013
    Assignee: CVRx, Inc.
    Inventors: Robert S. Kieval, Bruce J. Persson, David J. Serdar, Peter T. Keith, Martin A. Rossing